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Preface

v

The primary purpose of this book is to provide scientists with a broad survey 
of biostatistical methods. This book is intended for use by scientists in all dis-
ciplines. To this end, we present a series of biostatistical techniques illustrated 
with examples. Many of the examples are from biology and medicine. Elemen-
tary methods include descriptive statistics, study design, statistical inference, 
categorical variables, evaluation of diagnostic tests, comparison of means (t-
test, nonparametric tests, and analysis of variance), linear regression, and logis-
tic regression. All of these methods can be performed with paper, pencil, and 
a calculator in simple cases. The secondary purpose of this book is to introduce 
more complicated statistical methods requiring either collaboration with a bio-
statistician or use of a statistical package. Our goal is not to teach the reader 
how to use these methods but rather to teach the “language of statistics” so that 
collaborating with a biostatistician or deciphering a software manual is more 
productive.

Walter T. Ambrosius
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Study Design: The Basics

Hyun Ja Lim and Raymond G. Hoffmann

Summary
In biomedical research, meaningful conclusions can only be drawn based on data collected 

from a valid scientifi c design using appropriate statistical methods. Therefore, the selection of 
an appropriate study design is important in order to provide an unbiased and scientifi c evaluation 
of the research questions. In this chapter, the different kinds of experimental studies commonly 
used in biology and medicine are introduced. A brief survey of basic experimental study designs, 
randomization, blinding, possible biases, issues in data analysis, and interpretation of the study 
results are mainly provided.

Key Words: As-received analysis; bias; blinding; block randomization; carryover effect; 
cluster design; complete randomization; compliance; crossover design; dropout; experimental 
study; exploratory analysis; factorial design; group allocation design; historically controlled 
study; intention-to-treat analysis; masking; per-protocol analysis; randomization; randomized 
controlled study; stratifi ed randomization; subgroup analysis.

1. Introduction
In biomedical research, meaningful conclusions can only be drawn based on 

data collected from a valid scientifi c design using appropriate statistical methods. 
Therefore, the selection of an appropriate study design is important to provide 
an unbiased and scientifi c evaluation of the research questions. Each design is 
based on a certain rationale and is applicable in certain experimental situations. 
Before a study design is chosen, some basic design considerations such as goals 
of the studies, subject or sample selection, randomization and blinding, the 
selection of controls, and some statistical issues must be considered to justify 
the use of statistical analyses. In this chapter, the different kinds of experimental 
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studies commonly used in biology and medicine will be introduced. The primary 
purpose of this chapter is to provide scientists with a brief survey of basic 
experimental study designs, randomization, blinding, and possible biases. Fur-
thermore, issues in data analysis and interpretation of the study results will be 
considered.

2. Experimental Studies
An experimental (or interventional) study is a study in which conditions are 

controlled and manipulated by the study investigator. This type of study is 
contrary to an observational study in which the investigator does not control 
conditions, as in surveys and most epidemiologic studies. The major objective 
of an experimental study is to provide a precise and valid treatment comparison. 
The design of a study can contribute to this objective by preventing bias, ensur-
ing an effi cient comparison, and possessing suffi cient simplicity to encourage 
participation and minimize errors. Experimental studies involve one or more 
interventions, which an investigator controls, such as treatments, drugs, proce-
dures, technologies, or devices. In general, the purpose of an experimental study 
is to determine whether a treatment makes a difference or is effective on the 
study units or samples. Experimental studies in biomedical science are most 
commonly encountered as laboratory samples, animal experiments, or clinical 
trials on patients. Experimental units can be human subjects, animals, cells, or 
materials.

Experimental studies fall into two categories: those with controls and those 
without controls. Uncontrolled studies are conducted by trying a new treatment 
on some experimental units. Any benefi t or harmful effects seen in the study 
units will be ascribed to the new treatment. Many uncontrolled studies have 
suggested that a new treatment was highly effective, only for this apparent 
benefi t to disappear after more careful examination. There are several instances 
of treatments being investigated and found ineffective after many years. For 
example, the use of hormonal therapy in menopausal women was believed to 
reduce the risk of cardiovascular disease (1,2). A controlled study by the 
Women’s Health Initiative found that it does not protect the heart and may even 
increase the risk of coronary heart disease (3).

For controlled studies, the experimental treatment (or intervention) is com-
pared with another treatment. In some studies, a placebo/dummy treatment is 
used for comparison; in other studies, the existing standard treatment is used. 
In detecting whether the difference is due to the experimental treatment or to 
some other factor, studies with controls are more scientifi c and have greater 
validity than studies without controls. This section will discuss several con-
trolled experimental designs: randomized, historical, crossover, factorial, and 
cluster group designs.
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2.1. Randomized Controlled Studies

A randomized controlled study (or randomized controlled trial; RCT) is also 
known as a parallel design. Randomization refers to the random assignment of 
experimental units to one of two or more treatments for the purpose of compar-
ing the treatments on some outcome measure. To investigate whether a new 
treatment is better than other ones, in a randomized controlled study units are 
allocated into two or more groups and everyone within a group receives the 
same treatment. The control can be a standard treatment or placebo. A placebo 
is a treatment that appears to be identical to other study treatments, but with no 
true biological effect. Thus, placebo-controlled means experimental units in all 
study groups receive identical-appearing treatment, but some groups receive an 
inactive treatment. An example of a randomized controlled study is the Lipids 
Research Clinics Coronary Primary Prevention Study (4). To test whether 
lowering cholesterol can prevent the development of coronary heart disease, in 
this study a total of 4000 middle-aged males were randomized to receive either 
the cholesterol-lowering agent cholestyramine or a placebo. The number of 
experimental units to be allocated to each group in the randomized controlled 
study is fi xed in advance, and experimental units are randomly allocated to one 
of the groups by a specifi c randomization scheme detailed in Sections 3.1–3.3.
A randomized controlled study is not good for a low-prevalence disease because 
it is diffi cult to recruit study participants. There is also an ethical issue of using 
a placebo control group. A randomized controlled study may not be appropriate 
where disease prognosis is poor with current treatments.

2.2. Historically Controlled Studies

When researchers involved in a controlled study choose comparable study 
units from a previously existing group of units and compare them with a new 
intervention, it is called a historically controlled study. If history has established 
the performance of a standard treatment, a new intervention is used for com-
parison with the outcomes in the historical groups making it a nonrandomized 
and nonconcurrent study. An example of a historically controlled study is a 
study of an antibiotic lock (highly concentrated antibiotic solution) for the 
treatment of catheter-related bacteremia (5). In this study, a group of patients 
was given an antibiotic lock. They were compared with previous patients who 
received routine catheter replacement. Historically controlled studies can be 
conducted rapidly and at less cost than other types of studies. In addition, there 
is not an ethical issue of using a control group because the effect of standard 
treatment is known. Usually, sources of the control groups are from existing 
laboratory data, published literature, and medical charts or records that were 
not collected for any study purposes. This can lead to a lack of uniformity in 
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collecting and reporting data and to missing data. Major concerns about histori-
cally controlled studies are the quality of data, as well as the accuracy, com-
pleteness, and reliability with which control groups were collected. In recent 
years, outcomes research of large computerized prospective databases, such as 
cancer registries, have been expanded to provide important information. An 
improved outcome may be erroneously attributed to the treatment when the 
improvement may actually be from changes over time in the patient population, 
patient management, or diagnostic technology. Historically controlled studies 
are always potentially biased in evaluating whether a new intervention group 
is better than control groups.

2.3. Crossover Studies

When an experimental unit receives more than one treatment during a study, 
the design is called a crossover study. The word crossover has come to be used 
for studies in which experimental units are given a number of treatments in the 
same or possibly different number of periods, and each treatment is given at a 
different time to each experimental unit. In the most common type of crossover 
study there are two treatments (say A and B) and two periods. Half of the par-
ticipants are randomly assigned to start with treatment A in the fi rst period and 
then “cross over” to treatment B in the second period; the other half does the 
opposite. More than two treatments in a crossover study with as many periods 
as there are treatments can be used. However, these may be diffi cult to carry 
out in practice. An example of a crossover study is found in asthma treatments 
to compare a single dose of formoterol with a single dose of salbutamol (6).
Children are randomly allocated to either formoterol followed by salbutamol 
or salbutamol followed by formoterol. Because all experimental units receive 
all treatments and only the order of administering the treatments is randomized 
in a crossover study, randomization itself is less important than in a parallel 
design.

Both treatments are applied to each experimental unit in the common cross-
over study, and so each experimental unit forms its own control, and the mea-
sured effect of the intervention is the difference in each experimental unit’s 
response to the intervention and control. This allows both between-unit and 
within-unit analyses. Because the within-unit variation is usually less than the 
between-unit variation, this leads to the treatment difference being estimated 
with greater precision. Thus the study requires a smaller sample size. However, 
it needs a doubling of the study duration compared with a parallel design. To 
use the crossover design, we need to ensure that the effects from the previous 
treatment do not carry over into the period of the next treatment. If a carryover 
effect exists, the analysis is complicated, and the direct comparison of the treat-
ment effects can be invalidated. To remove such carryover effect, a washout 



Study Design: The Basics 5

period can be imposed between treatment periods with the hope that the prior 
treatment will cease to affect the experimental unit before starting the next 
treatment. In many cases, it is diffi cult to know whether all carryover effects 
have been eliminated. In crossover studies, the complexity of analysis and 
interpretation created by the problem of carryover effects are substantial. 
Patients dropping out of the study also have strong effects and more severe 
consequences than in a parallel design. For example, if a patient drops out of 
a crossover study in the second period, a simple analysis cannot use the data 
from only the fi rst period of treatment.

In general, a crossover design is appropriate for studies of treatments for 
chronic conditions, such as depression or hypertension. A crossover design is 
also appropriate for those treatments whose effects can be measured after a 
short period and the underlying disease condition does not change substantially. 
It is not appropriate for studies where the treatment changes the patient’s under-
lying disease condition substantially, such as in surgical treatments.

2.4. Factorial Designs

A factorial design is a study that tests the effect of more than one treatment 
in order to reduce time and expenses by looking at two or more factors simul-
taneously. For example, two treatments (say A and B) are simultaneously 
compared with each other and with a control. Experimental units are divided 
into four groups who receive the control treatment, A only, B only, and both 
A and B. The factorial design, which is a special type of the parallel design, is 
used to investigate two separate and relatively independent research questions 
simultaneously in a single study. The factorial design is very effi cient when the 
treatments do not interact with each other. In the presence of a treatment inter-
action between A and B, the estimation of the overall effect of A or B is not 
straightforward because the effect of A differs depending on the presence or 
absence of B. Interaction may be anticipated if the two drugs act on the same 
response or through the same mechanism. If some interactions are known bio-
logically not to exist or are unimportant, the partial or fractional factorial design 
can be used to reduce the sample size and complexity of the experiment. This 
can be done by omitting certain treatment combinations from the design and 
still estimating all of the other effects. An example of a factorial design is the 
Physician’s Health Study that investigated the roles of aspirin and beta-carotene 
in reducing the risk of cardiovascular disease and the risk of cancer, respec-
tively (7). Another example of a factorial design is the Women’s Health Initia-
tive Study that investigated the role of dietary modifi cation and hormone 
replacement therapy in reducing the risk of breast and colorectal cancer and the 
risk of heart disease and osteoporosis, respectively (8).
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In general, a factorial design is appropriate to study different diseases such 
as aspirin on myocardial infarction and beta-carotene on cancer, different mech-
anisms such as radiotherapy or chemotherapy for tumor, or treatments whose 
combination may be much better than each individually. However, it usually 
is not appropriate when the combination of treatments would result in adverse 
effects.

2.5. Cluster or Group Allocation Designs

To address research questions about the effects of public health programs in 
the population, applying the intervention to groups of experimental units rather 
than individual units may be more feasible and cost-effective. When a treatment 
is randomly allocated to groups or clusters of experimental units, such as a 
family, school, workplace, or community, the design is called a cluster or group
allocation design. Experimental units within a cluster usually share similar 
environments or characteristics and thus are correlated. Randomizing by group 
rather than by individual is easier to conduct. Because randomization is per-
formed at the cluster level rather than at the individual unit level, the random-
ization unit differs in the analysis. Hence, the standard methods for sample size 
calculation are not directly applicable. One must consider both intercluster and 
intracluster variation for data analysis. One example is the study of vitamin A 
on morbidity and mortality in Indian children, which randomized with villages 
(9). Another example is the Hutchinson Smoking Prevention Project, which 
was a school-based study for evaluation of the long-term effectiveness on the 
prevention of habitual cigarette smoking among youth, which randomized 
school districts (10).

We have described several different study designs. We now turn to an exami-
nation of the different methods that can be used within a design.

3. Randomization
The design of an experimental study involves the choice of a method 

for allocating treatments to experimental units. An investigator’s knowledge 
of treatment allocation might introduce bias by conscious or unconscious 
selection of experimental units to receive a particular treatment. The most 
widely used method of unbiased treatment allocation is to use random 
allocation to assign experimental units to treatment groups. The original 
concept of randomization was from R.A. Fisher in his classic text, The Design 
of Experiments, in 1935. It was originally used in agricultural experiments, 
where various plots in a fi eld were randomly assigned to different experimental 
conditions. Later the idea was adopted for use in other experimental studies 
and clinical trials.
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Randomization is mainly used to avoid possible bias in selection and alloca-
tion of experimental units. In addition, randomization is used to prevent the 
existence of systematic differences among groups that are not due to the inter-
vention effect being compared. Randomization produces balance among groups 
on known or unknown risk factors and so provides comparability of groups. 
Randomization is a method to ensure that the intervention and control groups 
are as similar as possible with respect to all baseline characteristics at the begin-
ning of the study. Randomization ensures the validity of most statistical tests 
and is thus a fundamental principle of experimental design.

3.1. Complete or Simple Randomization

The simplest randomized scheme is complete or simple randomization,
where experimental units are assigned to a treatment according to a specifi c 
constant probability. For example, an investigator assigns each experimental 
unit into one of two groups, say A or B, with a specifi c probability. In the 
special case of two groups and equal probability of 0.5 to each, complete ran-
domization is represented by a fair coin toss or, equivalently, sampling with 
replacement of one of two marked cards (A and B) from a box. More practi-
cally, a random number table or random number generating algorithm may be 
used. This scheme may be applied to more than two groups or applied to two 
groups with unequal probability. One example of a randomization scheme with 
an unequal probability is a multicenter chronic hepatitis study that investigated 
the effectiveness of lamivudine antiviral therapy for patients with chronic hepa-
titis B and advanced liver disease. In this study, two thirds of patients were 
randomly assigned to lamivudine treatment group and one third to placebo 
group (11).

The allocation does not depend on the experimental unit’s prognostic factors 
or on the previous subject’s treatment assignment. The distinguishing feature 
of complete randomization is that the allocation is statistically independent 
among experimental units, thus there is no special complication in analysis. 
Complete randomization is simple, easy to implement, and eliminates the pos-
sibility of selection bias. However, it has the disadvantage that the number of 
experimental units in groups may be substantially imbalanced. In addition, the 
prognostic profi le between groups may differ substantially and thus their results 
perceived as less reliable. Studies exhibiting imbalances may be ineffi cient and 
are of a greater concern for small- and medium-sized sample studies.

3.2. Block Randomization
Alternative allocation methods that force balance between treatment groups 

are called block randomization, also known as a permuted block design. A block 
is a group of similar experimental units or characteristics. Blocks can be of any 
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size but are a multiple of the number of the study treatments. Block randomiza-
tion is used to keep the numbers of experimental units in the different groups 
closely balanced at all times. For example, if we consider experimental units 
in blocks of four at a time, there are six ways in which we can allocate treat-
ments so that two experimental units get A and two get B: AABB, ABAB,
ABBA, BBAA, BABA, BAAB. One of these arrangements is selected at 
random, and the next four experimental units are assigned accordingly. This 
process is repeated as many times as needed. The method can also be carried 
out by allocating treatments within each block in the desired proportions such 
as 3 : 1 or 2 : 1. For each block, a random order of the treatments is used, and 
this is done independently for each block.

Block randomization provides balance in the numbers in each group through-
out the study. Implementation is not complicated, though not as easy as com-
plete randomization. Block randomization also increases the comparability of 
the treatment groups particularly when experimental unit characteristics may 
change over time. A disadvantage of block randomization is that treatment 
assignment is more predictable than complete randomization. Block randomiza-
tion provides balance in the numbers in each group but does not guarantee 
balance for important prognostic factors. This can be achieved using stratifi ed 
randomization.

3.3. Stratifi ed Randomization

Stratifi ed randomization (or permuted blocks within strata) is a combined 
randomization by defi ning strata based on prognostic factors and performing 
permuted block randomization within each stratum. The purpose of stratifi ed 
randomization is to ensure the treatment groups are balanced on important 
prognostic factors, for example age or disease status/condition, and to provide 
increased effi ciency and power in the analysis. This method requires a separate 
block randomization list for each stratum. For example, in a study to compare 
two alternative treatments for heart disease, it would be important to stratify 
by gender. Two separate lists of random allocation can be generated for males 
and females. Stratifi ed randomization can be extended to two or more stratify-
ing variables. In this way, the effect of nuisance factors that contribute system-
atic variation to the differences among experimental units can be eliminated. 
However, such prognostic factors must be measured prior to randomization. 
The number of strata depends on sample size. In general, stratifying two or at 
most three prognostic factors is recommended, unless the sample size is very 
large.

The problems caused by many strata have motivated alternative adaptive 
randomization techniques such as the biased coin method (12), the urn method 
(13,14), adaptive stratifi cation (15), and response randomization.



Study Design: The Basics 9

4. Blinding/Masking

Blinding or masking is the purposeful concealment of the treatment 
assignment (and other relevant information) of the experimental units. 
Sometimes blinding refers to any attempt to make the various participants in 
a study unaware of which treatment experimental units have been offered, so 
that the knowledge cannot cause them to act differently thereby affecting the 
internal validity of the study. Blinding is needed most when reporting of the 
outcomes under consideration can be infl uenced easily by knowledge of treat-
ment, such as a patient’s pain or nausea in self-reporting or self-assessment 
studies.

Blinding can take place at three levels: study units, investigator, and data 
monitor/analysts. Blinding can be classifi ed into four types depending on the 
level: unblinded or open-label, single blind, double blind, and triple blind. An 
unblinded or open-label study is a study in which no blinding is used. The 
investigator and the experimental units know which treatment the experimental 
unit receives. When the experimental units are aware of which treatments they 
receive, they may react in favor of the treatment they receive, which can lead 
to a serious bias. The investigator may be tempted to look more carefully for 
outcomes or diagnose the outcome more frequently in a certain group. If the 
primary study outcome is objective, such as survival, open-label studies are less 
likely to be biased. However, where the primary outcome is subjective, such 
as diagnostic measurements, questionnaire scales, or a subject’s self-reported 
opinions, open-label studies are highly susceptible to bias. In general, open-
label studies are not considered as adequate as well-controlled blinded studies 
for providing substantial evidence of treatment effect. However, it is not always 
possible to blind treatment administration in experimental studies involving 
treatments requiring different modes of administration, such as a medical device 
or a form of surgical experiments. In addition, blind treatment administration 
may not be recommended in experiments where knowledge of treatment assign-
ment is part of the effect being tested, such as dietary or smoking prevention 
intervention. An open-label study is simple to design and conduct and is less 
expensive than other designs. The disadvantage is that it has a probable bias 
introduced by the study units and study evaluators. Thus it is diffi cult to assess 
the true effect of the group difference. In the worst case, the study units may 
decide they don’t like the treatment and switch over to the other treatment on 
their own.

In a single-blinded study, only investigators are aware of which treatment 
each experimental unit is receiving. The investigator might affect the adminis-
tration of non–study treatment, data collection, and outcome measurement/
assessment. A single-blinded study is simple to carry out and, at times, the 
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investigator’s knowledge can help in making judgments for experimental unit 
care. However, the disadvantage is that it has a potential bias introduced by the 
investigator, who has the tendency of giving more intensive effort to a particular 
treatment group.

In a double-blinded study, neither the experimental units nor the investiga-
tors are aware of which treatment each experimental unit is receiving. A third 
party, often a committee, maintains the blindness and monitors data for toxicity 
and benefi t. In a double-blinded study, the risk of bias is reduced, as the inves-
tigator’s actions to the study groups are equal. This is the recommended design 
for a clinical trial. However, the disadvantages are that it is more complex, more 
expensive, and more diffi cult to administer than other studies. In addition, a 
double-blinded study needs an effective data-monitoring scheme and an emer-
gency unblinding procedure.

In a triple-blinded study, even the data monitoring committee is not aware 
of the identity of the groups. The theory is that the committee will evaluate the 
study results more objectively. The disadvantages are similar to those of a 
double-blinded study. Additionally, with the added complexity of a triple-
blinded study, the decision process in any emergency situation is slow. Some-
times triple blinding refers to not letting the analyst know which treatment a 
group receives, so that analysis is blinded.

As a part of blinding in drug intervention studies, matching and coding of 
drugs are used. Matching of drugs means both active and placebo drugs are 
physically identical in size, shape, taste, color, sheen, and texture. Coding of 
drugs means the labeling of bottles or vials does not disclose the contents of 
the drugs. Usually this is done by means of assigning a number to the active 
and placebo drugs.

5. Biases
An experimental study is conducted to draw inferences about what happens 

in the study sample and to extend the fi ndings to the population. When inves-
tigators design and implement a study, they worry about both random and sys-
tematic errors, which might weaken the study inference. Random error is 
unexplained variability and cannot be attributed to a specifi c cause. It can be 
reduced by increasing the number of observations or by training the evaluators 
to report or score the data in the same way. Systematic error is a deviation that 
is not a consequence of chance alone. For example, hospital A in a multicenter 
HIV study may use different assessment criteria of disease progression to 
AIDS. Systematic error cannot be reduced by simply increasing the number of 
observations. Only with a good study design and with training of the study team 
to promote standardization of procedures, such as a laboratory test or X-ray 
assessment, can systematic error be reduced.
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Bias is any deviation from the true value. Minert (16) defi nes bias as a pre-
conceived personal preference or inclination that infl uences the way in which 
a measurement, analysis, assessment, or procedure is performed or reported. 
Bias is considered a systematic error that can enter a study at any stage. Thus, 
bias refers to distortion in the selection of experimental units, collection of data, 
determination of end points, and fi nal analyses. Selection bias results from 
using an unrepresentative sample of the population from which it comes. In 
comparative experimental studies, it means that individuals with certain char-
acteristics are more likely to receive particular treatments. Assessment bias is 
caused when study participants (experimental unit or research team) are aware 
of which treatment experimental units have been offered. Information bias
results from the information experimental units provide to investigators, which 
is heavily tainted by their own belief and values. Observer bias is caused when 
the objectivity of the investigators varies. Assessment, information, and observer 
biases can be reduced by adopting blinding in the study, and selection bias can 
be reduced by using randomization. It is important in experiments to recognize 
that although bias can never be completely controlled, the effort to limit biases 
increases both validity of the study and the ability to detect true differences 
among treatments.

6. Analyses
Once data have been collected, they will be subjected to a statistical 

analysis in concordance with the experimental design and its associated model. 
In simple designs, if the outcome (or end point) measurement is a dichotomous 
variable, such as yes/no or success/failure, then the proportions between groups 
can be compared using a chi-square test. If the outcome measurement is con-
tinuous, then a t-test can be used to compare the mean difference between two 
independent groups. When the outcome measurement is continuous but is not 
normally distributed, nonparametric methods can be used. When a study 
involves subject recruitment over an extended period of time and the duration 
of follow-up time through a common calendar time point, survival analysis 
should be used. The methods of statistical analysis mentioned here will be 
discussed in later chapters of this book. In this section, however, we will con-
sider the more fundamental issue: which experimental units should be included 
in the data analysis?

6.1. Compliance

Before statistical methods are applied to a data set, investigators should 
assess whether the compliance within treatment groups is similar before com-
paring the outcomes in the groups. When a substantial number of experimental 
units drop out from the study, are lost to follow-up, do not receive the study 
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intervention, or do not adhere to the study protocol, the investigators should 
consider the effects of such deviation on the analysis. Here we consider two 
kinds of dropout: study dropout and treatment dropout. Study dropout occurs 
when experimental units do not complete follow-up due to withdrawal or 
refusal to participate in the study. For a univariate outcome, the outcome mea-
surement might not be obtained from such experimental units, thus they cannot 
be used in the analysis without some assumptions on missing data (see Chapter
17). Treatment dropout is noncompliance or nonadherence by experimental 
units. This occurs when experimental units do not receive the prescribed study 
regimen. There are different forms of noncompliance. Experimental units who 
stop taking or never received the assigned treatment represent one kind of 
noncompliance. For example, an experimental unit assigned a 6-week course 
of a twice-daily hypertension drug stops taking the drug after 1 week but 
remains in the study through the required follow-up time. Another example of 
noncompliance is departure from the prescribed schedule or dosage or a switch 
to another treatment. Noncompliance is also used broadly to refer to any 
instance where the actual treatment received differs from the intended treatment 
for any reason. Dropout or noncompliance is less serious for many basic science 
studies using animals, cell lines, or nonliving experimental units than for clini-
cal trials on patients.

There are many ways to measure compliance, including patient and care 
provider reports, pill counts, blood/urine tests, and electronic monitoring. For 
example, compliance could be defi ned as the number of pills taken or the per-
centage of prescribed pills taken while in the study. Even the most carefully 
monitored experimental study may fail to achieve perfect compliance. The 
manner of assessment and the defi nition of compliance/noncompliance depends 
on the study objective, study design, type of treatments, expected extent of 
noncompliance, and planned analysis. Noncompliant patients still provide 
information about the study outcome. However, poor adherence threatens the 
validity of the study fi ndings and can diminish the power of the study to detect 
a difference among the effects of treatment. In some cases, it may cause stop-
ping the trial early. Stratifying analysis by compliance causes serious bias and 
is rarely performed.

6.2. Intention-to-Treat Analysis

Treatment comparisons must be based on analyses that are consistent with 
the study design used to generate them. In the case of randomized experimental 
studies, the analyses of the outcomes of interest must be by assigned treatment. 
This means that the outcomes are used to judge an experimental unit’s assigned 
treatment regardless of whether or not it followed the assigned treatment when 
the outcomes are measured. This is called intention-to-treat (ITT) analysis.
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Intention-to-treat analysis includes all randomized patients in the groups to 
which they were randomly assigned, regardless of their adherence with the 
entry criteria, the treatment they actually received, and subsequent withdrawal 
from treatment (17). Noncompliant experimental units are included in the 
analysis as if they had fi nished the study in compliance with the original treat-
ment assignment. The principle of intention-to-treat is to compare groups as 
randomized, also known as as-randomized. According to this principle, each 
analysis treatment group should contain all experimental units and only those 
experimental units randomized to that group, with no postrandomization exclu-
sions. This approach may seem to be illogical at fi rst, as the outcome of a non-
compliant experimental unit is counted as a success or failure of a treatment. 
However, ITT analysis is assured to be unbiased, and it provides valid estimates 
and tests for the effect on outcome of the assigned treatment in a randomized 
experimental study.

ITT analysis estimates a parameter of primary interest, namely, treatment 
effectiveness, which is the population effect of prescribing one treatment versus 
another. The disadvantage of ITT analysis is that noncompliant experimental 
units will nevertheless be included in the estimates of the effects of that inter-
vention. Thus, ITT analysis cannot estimate treatment effi cacy, which is the 
biological effect of the treatment if taken as prescribed. Substantial dropout or 
nonadherence will also cause the ITT analysis to underestimate the magnitude 
of the effects of that intervention (18).

6.3. As-Received Analysis and Per-Protocol Analysis

An alternative to the ITT approach is as-received analysis and per-protocol
(PP) analysis. As-received analysis is based on the particular treatment actually 
received. Per-protocol or adherence-only analysis uses experimental units who 
remain on assigned treatment and adhere to protocol. The primary analysis of 
a randomized experimental study should compare experimental units in their 
randomly assigned treatment groups. However, when a substantial number of 
experimental units are noncompliant, it is tempting to consider treatment com-
parisons using only those experimental units with treatment as actually received 
rather than as prescribed. There are several arguments against this as-received
approach, such as the prognostic balance by randomization is likely to be dis-
turbed. The sample size will be reduced, or the validity of statistical procedure 
will be undermined. Results of analysis by treatment as received may suffer a 
bias introduced by compliance or a factor often related to outcome independent 
of the treatment received. One example is the Coronary Drug Project, which 
tested the effi cacy of the cholesterol-lowering drug clofi brate on mortality (19).
In this randomized, double-blinded, placebo-controlled study, patients who 
adhered to the clofi brate regimen had a benefi t, whereas those who did not 
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adhere had a death rate similar to the placebo group. The extent and nature of 
this bias may be related to the defi nition of compliance in per-protocol analysis. 
The PP analysis includes all patients who completed the full course of assigned 
treatment and who had no major protocol violation. Both perprotocol and as-
received analyses should be interpreted with caution.

In general, the results of studies are often evaluated with both ITT and per-
protocol analyses. Because not all experimental units taking the experimental 
treatment in the general population will take it for the course as prescribed, the 
ITT tends to give an estimate of the overall effect that the experimental treat-
ment will have on the population. The PP results estimate the overall effect of 
the full course of experimental treatment. The results from both ITT and PP 
analyses are important and should be considered. If both analyses produce 
similar results, the conclusion of the study is certain and confi dent. If they 
differ, results of the ITT analysis are preferred because they preserve the value 
of randomization.

6.4. Subgroup Analysis

There is often interest in identifying which experimental units do well on a 
treatment and which do poorly. To answer questions like this, we analyze the 
data separately for subsets of the data, which is called subgroup analysis. In 
experimental studies, subgroup analyses are defi ned as comparisons among 
randomized groups in a subset of the study. The main aim of subgroup analysis 
is to study consistency of treatment effects among different groups of experi-
mental units and to identify large differences between subgroups. Subgroup 
analysis may be possible using data from all or some subset of a study. Because 
it uses a smaller sample than the entire study and so may not be of suffi cient 
power to detect important differences, subgroup analyses can lead to wrong 
conclusions and are easy to misuse. Thus we should avoid claiming that a treat-
ment is effective (ineffective) in the subgroup population when the differences 
were observed (unobserved) in a subgroup analysis. The results from subgroup 
analyses can be useful and may offer hypotheses for subsequent evaluation and 
future research. As secondary but not confi rmatory analysis, subgroup analysis 
should also be planned in advance before treatment is started. Appropriate 
secondary analyses in any randomized experimental study should also be based 
on the intention to treatment principle.

6.5. Exploratory Analyses

Experimental studies should be designed primarily to get precise answers to 
the main research questions written in the study protocol. However, there is 
considerable interest in trying to learn something about the underlying biology 
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of the disease during the course of a study beyond the planned study objectives. 
This is called exploratory analysis, which serves to generate and not to prove 
hypotheses. Usually, data are collected on experimental units in an attempt to 
understand which variables are useful in predicting subject outcome for use in 
subsequent studies and in explaining the results of a given study. The general 
questions in exploratory analyses include: “What are the important prognostic 
baseline factors?” “How can they be used in the future studies?” “Are there any 
specifi c subsets of experimental units that have different outcomes?” Thus, the 
exploratory analysis can be used as a pilot study to obtain valuable information 
on optimal experimental conditions, participant sources, and recruitment. From 
the pilot study, the preliminary result will indicate whether a full-scale study 
is practical. One should keep in mind that any statistically signifi cant results 
from any exploratory analyses should be interpreted with caution. Various sta-
tistical methods for exploratory analyses and extrapolation will be introduced 
in the later chapters of this book.

7. Study Interpretation
Interpretation of the results is the fi nal phase of an experimental study. In 

most cases, the statistical analysis of an experimental study is straightforward, 
using relatively simple methods such as t-test or chi-square tests, and interpreta-
tion is also straightforward. However, inferences from a sample to a population 
depend on the assumption that the experimental units are representative of the 
population. Because most studies use inclusion/exclusion criterion to select 
eligible units, extrapolation of results to other units may not be guaranteed. For 
example, when a study is conducted on middle-aged men, it is not reasonable 
to assume that the results apply to women or to young or very old men. Because 
it is quite possible that different groups would respond differently, wider appli-
cability or generalization of the study results should be carefully considered. 
Before an investigator extrapolates the results from a study to the population 
in general, there are two aspects that require particular attention. First, the 
samples studied should be representative of the population of interest. Second, 
groups being compared should be as alike as possible apart from the features 
of direct interest. If a study fi nds a statistically signifi cant difference, the inves-
tigators should provide the limitation of the fi ndings and the degree of com-
pleteness of the data to evaluate a study. If a study fi nds no statistically signifi cant 
difference, then the investigators should provide their understanding of why no 
difference was found. There might be several possible explanations, such as 
using inappropriate dosage, a too-small sample size, too many dropouts, lack 
of adherence, or inadequate outcome measurement. It is desirable to conduct 
subgroup analysis, which might provide clues about variation in the effective-
ness of a treatment for different groups of experimental units. Findings related 
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to the secondary questions may be interesting, but they should be put in the 
proper perspective.

In summary, we have presented many basic ideas of study design and 
conduct. Most of these ideas will be expanded upon in later chapters.
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Observational Study Design

Raymond G. Hoffmann and Hyun Ja Lim

Summary
Much can be learned about a process by observing changes over time or by comparing two 

different processes under different conditions. This chapter introduces the major types of 
observational study designs: the longitudinal or cohort study, the comparative or case-control 
study, and some of their variants. It also includes examples of the key measures of relationship 
between factor and outcome in observational studies, the relative risk and the odds ratio. The 
similarity of the two measures for low incidence outcomes is illustrated, as is the use of 
attributable risk to assess how much of a binary outcome is due to a single factor.

Key Words: Case-control study; cohort study; cross-sectional study; matched studies; odds 
ratio; propensity score; prospective cohort; recall bias; retrospective cohort.

1. Introduction
Observational studies are an alternative to experimental studies. An obser-

vational study is sometimes termed a natural experiment. Instead of being ran-
domized into one group or another to ensure statistical balance, subjects are 
classifi ed into groups either by the presence of an exposure, which is called a 
cohort study, or the presence or absence of a disease, which is called a case-
control study. A subject could be a cell, a bacteria, a specifi c cell line, a pond 
of environmental interest, a rat, or a person.

Some examples of the different types of groupings that are used in observa-
tional studies are

 • Cohort studies (retrospective): having been exposed to asbestos in the workplace 
or not (or at different levels of asbestos exposure) with lung cancer as the outcome; 
growing up in an area with high fl uoride water compared with growing up in an 
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area without much fl uoride in the water with dental caries as an outcome; compar-
ing the outcomes of two different treatments for acne based on a registry of clinic 
patients in the past 5 years; or evaluating the effect of childhood obesity on dia-
betes using records from 10 years of a pediatric practice.

 • Cohort studies (prospective): choosing to smoke or not to smoke with the outcome 
being the development of lung cancer, emphysema, or heart disease; being part 
of an ecosystem that is high in volatile organic compounds (VOCs) compared 
with an ecosystem that is low in VOCs with the outcome being survival of a fl ora 
or fauna species; determining whether the apple- or pear-shaped body type (phe-
notype) leads to an increase in the development of heart disease, hypertension, or 
diabetes.

 • Case-control studies: being part of a group that develops a disease such as lung 
cancer compared with members of the group that do not develop the disease; 
comparing HIV polymerase chain inhibitor–resistant HIV to nonresistant HIV in 
order to identify characteristics differentiating the two groups; comparing patients 
who have a new highly virulent infectious disease of unknown etiology to subjects 
without the disease but living in the same neighborhood to identify factors associ-
ated with the etiology or cause of the disease; or comparing the results of a 
microarray analysis applied to cells from cancer patients and noncancer patients 
or a microarray analysis applied to normal cells and cancer cells from the same 
subjects.

 • Case-control (genetic association) studies: using cases that have high blood levels 
of methotrexate compared with controls that have low blood levels of methotrex-
ate to identify which alleles of CYP2E1, an enzyme that affects the rate of metabo-
lism of various compounds, relate to this phenotype; comparing severe chronic 
asthma (cases) to normal children of the same age, gender, and ethnicity to identify 
genes (or markers) that are associated with the disease; taking blood samples from 
cases and controls and either using a candidate gene approach or doing a genome-
wide scan (1,2).

The term subjects could represent persons, animals, bacteria, or any other kind 
of experimental unit.

Because the groups in an observational study are not randomized, they are 
not necessarily equivalent for many other factors that in fact may be the real 
cause of the difference or may be promoters or antagonists of the effect being 
studied. For example, in a study comparing lung cancer patients and patients 
without lung cancer, the patients may be representative of different lifestyles 
so that many risk factors appear to differ between the groups. For example, 
some patients could belong to a different socioeconomic class that is exposed 
to some occupational risk factor that differs from the noncancer group but has 
no relationship to the disease process. A risk factor like this is a potential con-
founder of the relationship. A confounder is a variable that hides either a rela-
tionship or a variable that makes a relationship appear strong when it is not.
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Risk in an observational study is often stated in terms of the relative risk of 
developing a characteristic based on exposure. If 3 out of 10 mammalian cell 
cultures exposed to ultraviolet (UV) radiation developed chromosomal abnor-
malities while 9 out of 10 mammalian cell cultures developed chromosomal 
abnormalities when exposed to UV radiation plus a common NSAID (nonste-
roidal anti-infl ammatory drug), then the relative risk (RR) of developing chro-
mosomal abnormalities due to NSAID exposure (in the UV test system) is

RR = =
9 10

3 10
3 0. .

In a study where entities are followed over time, the relative risk is expressed 
in terms of the time period. For example, suppose 5% of sunbathers develop 
skin lesions in a year if they use a sunblock of SPF 30 or more, and 10% of 
sunbathers develop skin lesions in a year if they use a sunblock of only SPF 5. 
The relative risk of developing skin lesions in a year for using a low-value SPF 
sunscreen is

RR
per year

5% per year
= =

10
2 0

%
. .

Another way of expressing this is that the protective effect of using a high-
number SPF sunscreen versus a low-number SPF sunscreen is

RR
per year

10% per year
,= =

5
0 5

%
.

and sunbathers are only half as likely to develop skin lesions. In Section 6 of 
this chapter, we will discuss relative risk in more detail, as well as other mea-
sures of risk such as the odds ratio.

2. Cohort Studies
A cohort study is one where two or more groups of subjects are followed 

over time to see if they develop some disease or if some event occurs. In an 
exposure study (occupational or environmental), the effect of exposure on 
multiple outcomes—death, cancer, heart disease—can be observed. There are 
two types of cohort studies: prospective and retrospective.

2.1. Prospective Cohort Studies

Prospective cohort studies (also known as follow-up studies) follow groups 
of cells, animals, or patients with different exposures until some point in time 
where something happens or the study is terminated (3). Usually the outcomes 
of interest (e.g., death) are specifi ed at the start of the study.
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Example: A Prospective Cohort Study

In the British Physician study, a prospective study of smoking, 34,439 male 
British doctors were invited to participate in a study on the effects of smoking 
(5). Initially, there were two groups, smokers and nonsmokers. Eventually, a 
third group, those who quit smoking, was followed for 10 years, then 20 years 
(6), and recently the 50-year follow-up was reported (7). They were followed 
to observe what diseases would develop related to smoking status. The risk of 
lung cancer for smokers was 2.49/1000, whereas the risk of lung cancer for 
nonsmokers was 0.17/1000. Thus the relative risk of lung cancer for smokers 
over a 50-year period is

RR = =
2 49 1000

0 17 1000
14 7

.

.
. .

In the same study, the risk of dying from ischemic heart disease (IHD) in 
smokers was 10.1/1000, and the risk of IHD in nonsmokers was 6.49/1000, 
giving an RR for IHD in smokers versus nonsmokers of

RR = =
10 1 1000

64 9 1000
1 56

.

.
. .

The rarity of lung cancer deaths is the reason that smoking has such an effect 
on lung cancer. Indeed, we can quantitate how much of the lung cancer mortal-
ity is due to smoking by examining the difference in the risk in the smokers. 
This is called attributable risk (AR) and is a measure of how much of the condi-
tion, problem or disease is due to the risk factor.

AR
Lung cancer mortality due to smoking

All lung cancer mortality
=

=
2.. .

.
% . %.

49 1000 0 17 1000

2 49 1000
100 98 6

−
× =

The same calculations give an attributable risk of 35.7% of the IHD mortality 
in the smokers due to smoking during the 50 years of follow-up.

2.2. Retrospective Cohort Studies

Retrospective cohort studies use historical data to make comparisons based 
on risk factors or exposures that occurred prior to the event. Historical records 
of snowfall in different continents can be used to study the effects of global 
warming. Historical records of bacterial prevalence in different hospitals can 
be used to study the effects of frequent antibiotic use. Patient records can be 
used to compare the effect of different treatments. Retrospective cohort designs 
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may also use historical data from prospective cohort studies. For example, the 
Framingham Heart Study (8,9) examined the effects of different partitions of 
the risk factors. Retrospective cohort analyses can be facilitated if the initial 
design of the cohort study recruits not just 1000 smokers and 1000 nonsmokers 
but 2000 subjects some of whom will be smokers and some of whom will be 
nonsmokers. Alternatively, the nonsmoking group can be studied by itself in 
retrospective cohort studies to examine the effect of other risk factors indepen-
dent of smoking.

2.3. Analysis of Cohort Studies

Cohort studies are not subject to recall bias (defi ned as differential recollec-
tion of exposure because of the presence of the condition or disease) because 
the outcome occurs after entry to the study. However, in retrospective cohort 
studies, missing values for a factor that was not originally one of the primary 
risk factors can be a severe problem. The term missing completely at random
means that the probability of an observation being missing does not depend on 
the observed or unobserved measurements. This type of missing value only 
affects the magnitude of the effect that the study can detect. Other types of 
missing values can affect the validity of the estimated risk. For example, if 
subjects die from a treatment effect that is not one of the primary outcomes 
(e.g., being hit by a car because of disorientation caused by the treatment), 
disease-specifi c mortality will be signifi cantly biased, but all causes of mortality 
will not be biased (see also Chapter 17).

The presence of differences between the groups when the study was started 
is a problem with either type of cohort study. A study may show that exercise 
was a protective risk factor against heart disease, but it may be that the entire 
lifestyle is protective with regular exercise the best indicator for that protective 
lifestyle. Thus, when analyses of cohort data are performed, methods that group 
risk factors into similar classes, such as propensity scores, may be used (10,11).
Differences between groups at baseline can be adjusted for by stratifi cation 
(i.e., putting like hospitals together for studies of bacterial fl ora or putting 
experiments performed by the same lab technician together when studying the 
effect of immunoglobulins on longitudinal measures of infl ammation). Regres-
sion adjustment is another method for accounting for differences between 
groups and is discussed in Chapter 9.

3. Case-Control Studies
A case-control study compares the characteristics between two groups, 

usually one that has a condition or disease compared with one that does not 
have the condition or the disease (12). These characteristics are termed risk
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factors for the development of the disease. Some of the risk factors will be 
related to the development of the disease, some of them will be due to the 
presence of the disease but not involved in the development of the disease, 
and some of them will be due to chance. Statistical analysis is used to assess 
the probability or odds of the risk factor being related to the disease or 
condition.

Usually, external evidence for a mechanism of the development of the disease 
is also used to discriminate risk factors for the development of the disease from 
markers of the disease presence (13). Often, a case-control study will be fol-
lowed by a cohort study to test whether the disease or condition actually devel-
ops in subjects with the risk factor.

3.1. Odds Ratios

Because the number of cases and the number of controls is predetermined 
in a case-control study, the relative risk cannot be used (3). An alternative way 
of measuring risk is in terms of the odds ratio. The “odds of a disease given a 
risk factor” is the probability of having the disease with the factor divided by 
the probability of not having the disease with the factor present. Thus, if the 
probability is 0.20 or 1 in 5, the odds is 0.2/(1 − 0.2) = 0.2/0.8 = 0.25. It is also 
described as 1 : 4 (read as 1 to 4 and interpreted as 1 event will occur for every 
4 times it does not occur). This is the same type of odds that are given at a 
racetrack or for a sports team. The odds ratio is the ratio of the odds of the 
disease with the risk factor present divided by the odds of the disease with the 
risk factor absent. It is used in case-control studies because conditional proba-
bility arguments (12) can be used to show the computation of the odds ratio as 
the odds of the risk factor. For example, smoking, in lung cancer patients, 
divided by the odds of smoking in the controls is equivalent to the odds ratio 
for the disease given the risk factor.

For example, if the proportion of smokers in lung cancer patients is 1 in 10 
and the proportion of smokers in controls is 1 in 100, the odds ratio (OR) for 
lung cancer given smoking is

OR
Odds of smokers in lung cancer

Odds of smokers in ontrols
= =

( )1
10

9
100

1
100

99
100

11 0

( )
( ) ( )

= =. OR of lung cancer in smokers.

If the condition or disease is rare, the odds ratio and the relative risk are almost 
the same (see Section 6.2).
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3.2. Choice of Controls

The key design issue in a case-control study is the choice of the controls. To 
obtain an unbiased (correct or appropriate) estimate of the risk, the controls 
must be comparable with the cases for factors that are not related to the disease 
(or outcome). For example, in the study of endometrial cancer and estrogens 
(14), the controls were women from the same clinic, and some of them had 
bleeding problems related to exposure to estrogens. Thus the odds ratio was 
estimated as 1.7. When the controls were not chosen from the same clinic, the 
odds ratio was estimated as 11.98. Usually, a community control is necessary 
in addition to clinic controls to account for common factors in the controls and 
cases that may also be associated with the disease. One possibility for a com-
munity control is a friend of the same gender, who will most likely be similarly 
aged and of similar socioeconomic status. Another possibility for a community 
control is to use controls from the same block, the same census tract, or from 
within a 1-mile radius of the control. However, if the risk factor is environmen-
tal, choosing someone within a 1-mile radius may mean that the control is 
exposed to the same toxic substance. These same considerations must be taken 
into account if the study is of the number of mutations observed in a cell 
selected from ponds near an environmental source compared with ponds that 
are not near the environmental source. The control ponds must be comparable 
with the “case” ponds in terms of depth, surface area, and so forth.

Because many disease conditions are rare, one design option for a case-
control study is to use 2 or 3 times as many controls as cases to compensate 
for the shortage of cases. When the disease condition is not rare, a design option 
to improve the sensitivity of the study is to use 2 or 3 times as many cases as 
controls so that the effect of a range of exposure to the risk factor in the cases 
can be compared with the controls.

3.3. Case-Control Genetic Association Studies

The case-control strategy has also been adapted to genetic studies of associa-
tion. The goal is to either identify the heritability of a trait or to identify the 
gene or the marker of a gene that is associated with the phenotypic trait. Usually, 
“cases” represent the presence of some phenotype (e.g., hypertension, curly 
fruit fl y wings, differential pharmacokinetic and pharmacodynamic response, 
or polymerase inhibitor resistance in the HIV retrovirus). In a genetic associa-
tion study, the controls are chosen not to have that phenotype. However, the 
controls again need to be similar to the cases in general genetic background; 
otherwise false-positive genes will be identifi ed because of admixture (differ-
ences between the groups that are unrelated to the outcome of interest). More 
on genetic association studies will be found in Chapter 21.
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3.4. Matching and Case-Control Studies

In some studies, the controls are matched to the cases to eliminate confound-
ers (e.g., age or gender) that can affect the presence of the disease but are not 
directly related to the development of the disease. For example, each control 
may be chosen to be within 2 years of age of the corresponding case. Evalua-
tions of the effects of an intervention on two different cell lines would be done 
by the same lab technician or with the same batch of chemicals. Another type 
of matching often found in genetic studies is to match siblings that are specifi -
cally chosen to be either affected by the disease or unaffected by the disease. 
Environmental studies often match on nonenvironmental factors that may pre-
dispose to the disease. For example, one might match the cigarette smoking 
status of parents in a case-control study of leukemia due to exposure to power 
line radiation.

In another example of a case-control study using matching, researchers 
examined pemphigus foliaceus, which is an adolescent/early adult autoimmune 
disease that has both genetic susceptibility and suspected environmental risks 
(possible insect carriers, etc.). Both family controls and community controls 
were used in the study (15). The disease was studied in a remote Indian com-
munity in Brazil with one to four age-matched family controls over age 18 
matched and one to fi ve age-matched community controls. The goal was to be 
able to identify differences within the “house,” as well as differences in the 
location of the house, exposures by occupation, pets, different types of insects, 
and several other factors. Family controls were required to be over 18 to reduce 
the chance that they would become cases.

One disadvantage of matching by age is that it may be diffi cult or impossible 
to fi nd controls close enough in age to participate in the study. Sometimes a 
group-matching strategy is used to approximately balance age without matching 
one-to-one.

Another disadvantage of matching is that it is possible to overmatch by 
choosing a matching variable that is part of the causal pathway of the disease 
or condition. Overmatching tends to mask the relationship between the risk 
factor and the disease. For example, if obesity causes hypertension, which 
causes strokes, then matching on hypertension status would be overmatching 
because it would be removing part of the effect of obesity on strokes.

3.5. Biases in Case-Control Studies

In a case-control study, selection bias refers to the problem that people who 
agree to participate in a study may be different from people who do not agree to 
participate. Sometimes the nonparticipants can be compared with the participants 
in terms of gender and age to test comparability of the participants and the 
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nonparticipants. An alternative is to use a capture-recapture strategy by acquiring 
data from a separate registry to characterize cases with the condition (16).

Unlike cohort studies, case-control studies are subject to recall bias. Recall 
bias refers to differential recall between the cases and the controls about expo-
sure to the risk factor(s). For example, a questionnaire survey of mothers of 
babies with birth defects will likely recover much more detail on exposure 
compared with mothers of normal children. In some cases, access to the medical 
records will allow equal ascertainment of the exposure if the medical records 
are complete enough to have the information.

3.6. Cross-Sectional Studies

The cross-sectional study design is a unique kind of case-control study. This 
type of design is used if cases cannot be identifi ed a priori or if the prevalence 
of the disease or condition needs to be determined. Subjects are sampled ran-
domly and then classifi ed according to whether or not they have the condition. 
From this point on, everything proceeds as if the study were a typical case-
control study. Even the odds ratio can be determined from prevalence data, 
called the prevalence odds ratio. An example of a cross-sectional study is 
drawing blood samples from a population of interest and then cross-classifying 
them by biochemical or genetic markers after assays have been performed on 
the blood.

4. Outcomes
Outcomes in an observational study depend on the type of study. In a case-

control study, the “disease” outcome is binary (present or absent) or ordinal 
(healthy, preclinical, clinical, and advanced). If the outcome is ordinal, the 
relationship is usually examined by comparing two states at a time.

Several types of outcomes are possible in a cohort study. As with a case-
control study, the outcome may be binary. For example, the grouping factors 
may be smokers and nonsmokers and the outcome is the development of car-
diovascular disease. If the key outcome is rare, like lung cancer, the study may 
need to be much larger to have suffi cient disease events to allow comparisons 
of the two groups (see Chapter 14 and Chapter 19). The outcome variable(s) 
also usually includes the binary disease event and the time to occurrence 
of the disease. In this case, survival analysis statistical methods are used (see 
Chapter 15).

Outcomes in a cohort study may also be continuous. For example, a cohort 
study may look at the level of PSA (prostate-specifi c antigen) or a lung function 
measure. The advantage of this type of study is that changes may be detected 
before they are irreversible.
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The outcome of a cohort study may also be a counting variable, such as the 
number of genetic abnormalities (breaks in the chromosomes). For example, 
in a study of the effect of human growth hormone (HGH) in children of very 
small stature compared with normal-height children, a retrospective cohort 
study was used with the outcome being a count of the number of chromosomal 
defects (17).

Each type of outcome requires a different type of statistical analysis: logistic 
analysis or survival analysis for binary data (see Chapter 14 and Chapter 15,
respectively), Poisson regression for counts of the number of events (3), and 
mixed model regression and analysis of variance (see Chapter 11) for continu-
ous observations over time. When the outcomes are continuous, the effect of a 
discrete risk factor may be expressed as a difference in means. If the risk factor 
is continuous, it may be expressed as a correlation.

5. More on Odds Ratios and Relative Risks
5.1. Relative Risks

If the outcome is binary, then the probability of the event occurring is based 
on some risk factor being present. This is more often presented in terms of a 
relative risk: the ratio of the probability of the event with the factor present 
compared with (divided by) the probability of the event occurring with the 
factor absent. In general, the relative risk requires a time frame for the event 
to occur (e.g., a month, a year, 10 years). A secondary infection from someone 
who has a cold may only take a few days to develop, whereas the development 
of emphysema from cigarette smoking may take decades. Another example 
might be the probability of an anticancer drug achieving a 95% in vitro effec-
tive reduction of cancer cell activity. Clearly, in this case the probability of the 
drug being effective depends on the individual cell response.

Usually, relative risk is determined for two different levels of the risk factor. 
If the risk factor is continuous, the two levels must be chosen. For example, 
use the level of exposure to cotton dust in a cotton processing plant; the levels 
might be chosen to be 10 µg · ms/m3 and 200 µg · ms/m3 (a level that equals the 
National Institute of Occupational Safety and Health level of permissible expo-
sure). The relative risk of a 200 µg · ms/m3 compared with a 10 µg · ms/m3

exposure, if the coeffi cient of the odds ratio per µg · ms/m3 is 0.00346 from a 
logistic regression (see Chapter 14), is

RR = exp[0.00346 × (200 − 10)] = 1.93.

If the variable were age, the choice of the two levels is often a decade apart. If 
the risk factor were discrete, for example, such as managers, foremen, and 
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weavers in the cotton processing plant, the relative risk is determined pairwise. 
For example, if the risk of byssinosis (disease of the lungs caused by inhalation 
of cotton dust or dusts from other vegetable fi bers) in a 5-year period is 3% for 
managers, 15% for foremen, and 30% for weavers, the relative risk of byssi-
nosis of weavers to managers is 30% ÷ 3% = 10.0, for weavers to foremen is 
30% ÷ 15% = 2.0, and for foremen to managers is 15% ÷ 3% = 5.0.

5.2. Odds Ratios

As discussed earlier, an alternative way of measuring risk is in terms of the 
odds ratio. To compare relative risk and the odds ratio, suppose the incidence 
of lung cancer in smokers is 1/1000 in a 5-year period and 1/10,000 in non-
smokers in the same time period. Then the relative risk is

RR
,000

= =
1 1000

1 10
10 0. .

The odds for smokers is 1/999 = (1/1000) / (999/1000) and the odds for the 
nonsmokers is 1/9999; thus the odds ratio is

OR = =
1 999

1 9999
10 01. .

If the disease is rare, the odds ratio is essentially the relative risk (12). If the 
disease is common, for example, 1/10 of children have colds compared with 
1/100 adults, the relative risk is 1/10 divided by 1/100 = 10.00. However, the 
odds for children is 1/9 and for adults is 1/99, which gives an odds ratio of 99/9 
= 11. Most diseases are rare in the population as a whole but may not be rare 
in a high-risk subgroup. For example, recurrence of breast cancer may be 
common in women who originally had breast cancer.

One advantage to using the odds ratio is the ability to calculate the odds ratio 
of not getting the disease given the risk factor. This is calculated as 1/{odds 
ratio of getting the disease given the risk factor}. For example, if the odds of 
heart disease given a good exercise program is 0.5, the odds of not getting heart 
disease with a good exercise program is 1/0.5 = 2.0. Using the odds ratio also 
gives us the ability to determine the odds ratio of getting the disease with the 
risk factor not present. This is calculated as 1/{odds ratio of getting the disease 
given the risk factor}. For example, if the odds ratio of heart disease in a non-
smoker is 0.4, then the OR in a smoker is 1/0.4 = 2.5. A fi nal advantage is that 
the odds ratio can be computed from a case-control study even though the rela-
tive risk cannot (12). Using the odds ratio rather than the relative risk makes it 
easier to describe the relationship between the risk factor and the disease In 
addition, the coeffi cients of many of the regression models—logistic, Poisson, 
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and proportional hazards regression analysis—can be directly interpreted in 
terms of the odds ratio (see Chapter 14 and Chapter 15).

6. Conclusion
Observational studies are useful when randomization cannot be used to 

divide exposure into groups. Observational designs can also be used to compare 
factors when the groups are defi ned by the values of the outcome. Observational 
studies are not a replacement for randomized designs but allow formulation and 
testing of hypotheses in cases where experimental interventions are not possi-
ble. Experimental interventions are not possible when the characteristics of 
interest are innate parts of the experimental units or when using historical data. 
Each type of observational study—cohort and case control—can be used to 
characterize abnormal versus normal cells, mutant versus wild genes, or dis-
eased versus nondiseased patients.
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Descriptive Statistics

Todd G. Nick

Summary
Statistics is defi ned by the Medical Subject Headings (MeSH) thesaurus as the science and art 

of collecting, summarizing, and analyzing data that are subject to random variation. The two broad 
categories of summarizing and analyzing data are referred to as descriptive and inferential 
statistics. This chapter considers the science and art of summarizing data where descriptive 
statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of 
descriptive statistics, including describing qualitative and quantitative variables. For describing 
quantitative variables, measures of location and spread, for example the standard deviation, are 
presented along with graphical presentations. We also discuss distributions of statistics, for 
example the variance, as well as the use of transformations. The concepts in this chapter are useful 
for uncovering patterns within the data and for effectively presenting the results of a project.

Key Words: Box plot; location; logarithms; multivariate data; spread.

1. Introduction
Statistics is defi ned by the Medical Subject Headings (MeSH) thesaurus as 

the science and art of collecting, summarizing, and analyzing data that are 
subject to random variation. (1) The two broad categories of summarizing and 
analyzing data are referred to as descriptive and inferential statistics. This 
chapter deals with descriptive statistics. Inferential statistics involve the use of 
statistical tests such as Student’s t-test, analysis of variance (ANOVA), and so 
forth. These will be covered in later chapters. When summarizing data, descrip-
tive statistics and graphics are used to display data in a succinct manner. Dis-
playing data is useful for uncovering patterns within the data and for effectively 
presenting the results of a project. In this chapter, we focus chiefl y on describ-
ing one variable at a time, or univariate data. When describing relationships 
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between two or more variables, bivariate or multivariate data displays should 
be considered. However, as will be shown here, the fi rst step in describing 
bivariate data is to use simple descriptive statistics.

Descriptive statistics, or simply statistics, are often used on a sample to 
estimate characteristics of a population. Characteristics, or traits, that we 
measure on an individual or other source are often called variables, because 
they vary from individual to individual. Measurements obtained diverge for 
many reasons, including variability due to measurement error, environment, 
genotype, and the like. First, we describe the different types of variables.

2. Types of Variables
There are many types of variables that occur in molecular biology and 

medical fi elds. The two main categories of variables are qualitative and quan-
titative variables. Qualitative variables give rise to categorical data and are most 
often referred to as simply categorical variables. They are merely classifi ca-
tions, such as membership in one of a few groups; for example, race (black/
African American, white, Asian, American Indian/Alaskan native, Native 
Hawaiian/other Pacifi c Islander) or cervical tissues (cancerous, normal). Labels, 
or names, are given to different diagnoses, but a magnitude cannot be given. If 
there is no natural ordering of the categories, then the categorical variable is 
nominal. In the case of exactly two categories (yes/no), we say the nominal 
variable is a dichotomous or a binary variable; for example, sex (male, female) 
and remission status (partial, complete). If there is a natural ordering, such as 
pain classifi ed on a 4-point scale (none, mild, moderate, severe), the categorical 
variable is said to be ordinal. With ordinal variables, the magnitude is not 
important, but there is an order to the data. Occasionally, a variable can be 
classifi ed as either nominal or ordinal. For example, genotype can be classifi ed 
on a nominal scale with the three genotype categories of AA, AB, BB. More 
commonly, however, the number of A alleles are counted and the trait is treated 
as an ordinal scale, such as 0, 1, or 2 A alleles.

Quantitative variables can be measured according to an amount or quantity 
(e.g., expression levels) and are also called numeric, scaled, or metric variables. 
When the values only take integers or a small number of values, we say it is a 
discrete, or discontinuous, numeric scale. Both order and magnitude are impor-
tant for discrete variables, but the values are usually restricted to integers (e.g., 
the count of the number of mutant alleles). When the values are not restricted to 
a set of specifi ed values (e.g., weight of 175.25 lb), we say the variable is a con-
tinuous numeric variable. In practice, there is overlap between discrete and con-
tinuous quantitative variables, but this overlap is usually insignifi cant because 
typically the data type can be described by the same statistic (e.g., median). It is 
important to note that ratios can be taken only if the quantitative variable has a 
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nonarbitrary zero point. For example, the Celsius temperature scale is a relative 
scale and not a ratio-scaled measure. For example, 50°C is not twice as much as 
25°C. However, the Kelvin scale is an absolute scale so it would be appropriate 
to say 50 K is twice the heat as 25 K. Ratio-scaled variables can be either discrete 
or continuous. When the value of a variable is only known to occur in a certain 
period, the data are censored (e.g., timed to some event in months).

A response variable is a measure that is thought to be affected by the differ-
ent conditions and is of primary interest. The response variable is also called a 
dependent or outcome variable. A response variable that leads to the completion 
of follow-up of an individual in a trial is an end point (e.g., death). An explana-
tory variable is one that is collected or actively controlled by the investigator 
to better understand the variation observed in the response variable (2). An 
explanatory variable is also called a predictor, independent, or factor variable. 
Response and explanatory variables can either be quantitative or qualitative. 
Along with the scientifi c question of interest, the data type and number of 
response and explanatory variables decide which statistics and statistical tests 
will be appropriate (3).

3. Describing Qualitative Data
Categorical variables, including ordinal variables, describe qualities or attri-

butes. To describe these variables, counts or frequencies of individuals in each 
category are often displayed visually. Occasionally, the mode, or the most fre-
quent observation, may be reported. The mode is useful in describing nominal 
data because there is no magnitude or order. However, it is usually suffi cient 
to report the frequency and proportion for each category. If frequency is denoted 
by n and the total number of observations is denoted by N, then the proportion 
(or relative frequency) of each category is computed by (n/N) × 100%. Typi-
cally, a frequency table or distribution is given to show the values and frequency 
of the values of a variable. For example, to describe the race of subjects in a 
sample, a frequency table may be given (Table 1). Alternatively, a bar chart 
may be used to display the relative frequencies in a graph (Fig. 1).

Table 1
Frequency Chart of Race (N = 500)

 n %

White 399 78
Black 78 17
Asian  15  3
American Indian   5  1
Pacifi c Islander   3 <1
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Fig. 1. Bar chart of race distribution (AI, American Indian; PI, Pacifi c Islander).

It is important to inspect the frequencies of the categories to determine 
whether a reduction of the categories is warranted for statistical analyses. For 
example, from the descriptive information of race in the example above, there 
are only three Pacifi c Islanders and fi ve American Indians. Describing further 
comparisons by these fi ve race categories would be wasteful and not provide 
any insight into trends by race. It would be more useful to collapse the Asian, 
American Indian, and Pacifi c Islander categories into a new category (Other), 
thereby reducing the number of categories to three. Another viable strategy 
would combine all non-white categories into a new category (minority), again 
reducing the number of categories to two (78% white and 22% non-white).

4. Describing Quantitative Variables
For quantitative variables, it is necessary to report two statistics. Regardless 

of the specifi c statistics used, the two measures that should be reported for 
quantitative variables are measures of the center and variability. These are 
referred to as measures of location and spread. The number of observations 
(the sample size, n) is also important, but it is generally not counted as one of 
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the summary statistics. There are many statistics that measure the location, or 
typical values, as well as the spread, or the typical variability, of quantitative 
variables. For measuring location, two of the most common measures are the 
mean and the median, though there is a wide assortment of other measures of 
location to choose from. In contrast with qualitative data, the mode is little used 
when reporting quantitative data. For measuring spread, the two most useful 
statistics are the standard deviation and outer quartiles.

4.1. Measures of Location

The mean is the most typical measure of location on a sample. The mean, 
commonly called the arithmetic average, is typically denoted as x̄. If x1,x2,  .  .  .  ,
xn are the n observations in a sample, the sample mean is

x

x

n

i

i

n

= =
∑

1 ,

where Σ is the uppercase Greek letter sigma denoting summation. If the ages 
of subjects in a study were 9, 11, 12, 14, and 18 years, then the mean age would 
be the sum of the ages divided by 5, so 64/5 = 12.8 years. The mean is sensitive 
to extreme values but is very useful for comparison methods because it has 
desirable mathematical properties (4).

The median is the middle-most value in a set of ranked data. It is more rep-
resentative of “typical” subjects in the data than is the mean. When there is an 
odd number of subjects, the median is the middle value of the (ordered) sample 
values. In a sample of 5 subjects in the previous example, the third highest 
value is age 12 and represents the median age. When there is an even number 
of scores, the mean of the two middle scores is used. For the observations (−4,
−2, 1, 5, 7, 8, 8, 10), the median is 6. The median is useful when there are 
extreme values because it is not as infl uenced by outliers as the mean.

The median is also called the 50th percentile, which is the second quartile. 
A more general term for the median is the 0.50 quantile. Quantiles split a sample 
of observations into equal and ordered parts. For example, the 0.50 quantile 
splits the data into two equal parts and is called the median. The 0.25, 0.50, 
and 0.75 quantiles are called quartiles because they split the data into four parts. 
Quintiles, deciles, and percentiles are other terms used to describe the quantiles 
that split the data into fi fths, tenths, and hundredths. To compute any quantile, 
the data should fi rst be ranked in ascending order from 1 to n. The qth quantile 
is then obtained by taking rank = q × (n + 1) and then interpolating between 
the two values with ranks on either side of the rank (5). For the observations 
(−4, −2, 1, 5, 7, 8, 8, 10), the 0.80 quantile corresponds with rank = 0.80 ×
(8 + 1) = 7.2. The rank of 7.2 falls in between the seventh and eighth rank, or 
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the observations with the values 8 and 10. By using linear interpolation, we 
fi nd the rank of 7.2 corresponds with an observation with the value of 8.4, which 
was derived using [8 + 0.2 (10 − 8)] = 8.4. Based on the rank of 7.2, after 
interpolation, the 0.80 quantile is 8.4.

There are other measures of location besides the mean, median, and quan-
tiles. For example, the trimmed mean, sometimes called the Winsorized mean, 
is another measure of location that does not depend on extreme values. The 
data is trimmed on both ends, or tails, of the distribution, and the mean is 
computed using the remaining data. For example, 10% trimming refers to using 
the middle 90% of the data by removing the upper and lower 5% of the data. 
Although trimming and Winsorization avoids the overinfl uence of outliers on 
statistics, one needs to use caution in computing the standard error of the 
trimmed mean because the usual formulas are not appropriate (6).

4.2. Measures of Spread

One is often interested in the amount of variability, or spread, in a set of 
observations. It should be reported along with the measure of location. The 
simplest measure of spread is the range. The range is the difference between 
the largest and smallest values. The range is most appropriate when there are 
less than 10 observations and there are no extreme values. When there are at 
least 10 observations, the outer quantiles are preferred as a measure of spread 
(2). The most common quantiles to use are the 0.25 and 0.75 quantiles, and 
the difference between these two quantiles is called the interquartile range
(IQR). The 0.10 and 0.90 are alternative quantiles when reporting the spread. 
The use of quantiles as a measure of spread is less sensitive to extreme values 
than range and other measures of spread. Generally, the IQR, along with the 
median, is a useful method to summarize data with especially asymmetrical 
distributions (7).

Perhaps the most common measure of spread is the standard deviation 
because of its association with the mean and its use in common statistical tests 
such as the t-test. Although the standard deviation is sensitive to extreme values, 
it measures the spread around the mean. The standard deviation, commonly 
denoted as s or SD, depends on the extent to which individual observations 
differ from the mean of the observations. Its calculation involves an intermedi-
ate step, the variance. The variance, s2, is the sum of the squared deviations of 
each individual value from the mean and is defi ned as

s

x x

n

i

i

n

2

2

1

1
=

−( )

−
=
∑

.



Descriptive Statistics 39

The divisor, n − 1, is known as the number of degrees of freedom (d.f.) of the 
variance estimate. The d.f. represents the number of independent pieces of 
information on the variability inherent in the observations (8). However, vari-
ance is expressed in squared units, and it is more intuitive to express the varia-
bility of a set of observations in original units. The standard deviation is 
obtained by taking the square root of the variance and is defi ned as

s
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For the observations (10, 20, 30), the mean is 20 and

s =
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It is easy to conclude that the standard deviation of (1, 2, 3) is 1 and s of (100, 
200, 300) is 100.

A practical implication of the standard deviation can be expressed in terms 
of coverage of the data. Regardless of the distribution of measurements, even 
if the data are not reasonably symmetric about the mean, at least 75% of the 
values fall within two standard deviations of the mean and at least 89% fall 
within three standard deviations of the mean. If the shape of the data is sym-
metric (see discussion below) with only one mode, approximately 68% of the 
observations are within one standard deviation of the mean, 95% are within 
two standard deviations, and almost all of the values fall within three standard 
deviations of the mean (9).

4.3. Displaying Quantitative Variables

Plots are valuable in showing the shape of the distribution of a set of obser-
vations. Two plots that are useful in displaying univariate data are a histogram 
and a box plot. A histogram is a frequency distribution that shows how often 
certain values of a variable occur. The horizontal axis shows the range of the 
variable and the vertical axis shows either the frequency or the relative fre-
quency of observations within each interval that is plotted. Figure 2 shows 
histograms for a bell-shaped distribution (left) and a positively skewed distribu-
tion, or a distribution with a tail to the right (right). The variable on the left was 
generated with a normal distribution (see below) and the variable on the right 
with a log normal distribution (if X has a normal distribution then Y = eX is said 
to have a log normal distribution). If, instead, the tail was to the left, the 



40 Nick

35 45 55 65

0.
00

0.
02

0.
04

0.
06

0.
08

Normal

45 55 65 75

0.
00

0.
05

0.
10

0.
15

Positively Skewed

Fig. 2. Histograms of bell-shaped and positively skewed distributions with mean 50 
and standard deviation 5 (N = 500).

distribution would be called a negatively skewed distribution. Both distributions 
have a mean of 50 and a standard deviation of 5. For the skewed distribution, 
an extreme value of 123 was set to 80 so it would not dominate the plot.

A bell-shaped distribution often follows a Gaussian or normal distribution.
Unlike skewed distributions, the normal distribution is symmetrical, and the 
highest point at the center is the mean of the distribution. The normal distribu-
tion also has two points of infl ection, which are points where the curve changes 
from convex to concave and vice versa. The distance between the mean and 
the fi rst infl ection point (where the curve changes from concave up to concave 
down) corresponds with one standard deviation and distinguishes the normal 
distribution from other bell-shaped distributions. Distributions that are bell-
shaped and not normally distributed may be heavy-tailed or light-tailed distribu-
tions. A heavy-tailed distribution refers to a curve with more distinctive tails 
compared with the tails of a normal distribution. A light-tailed distribution 
refers to a curve with less distinctive tails than a normal distribution. For 
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example, the uniform distribution, where the values of the variable are uni-
formly or equally distributed over an interval, is a light-tailed distribution. 
Kurtosis is a statistical measure of heavy tails and is positive when the tails 
are heavier than the normal distribution and negative when the tails are 
lighter. Skewness refers to one tail of the curve being heavier (or lighter) than 
the other.

To determine if a variable has a distribution similar to another (test) distribu-
tion, a quantile-quantile plot (q-q plot) may be used. The q-q plot graphs the 
quantiles of one distribution against the quantiles of another distribution. If the 
data follow closely to the diagonal line, then the distributions are considered 
similar. Specifi cally, to determine whether a variable has a normal distribution, 
one would compare the distribution of the variable to a normal distribution. A 
q-q plot that uses a normal distribution as the test distribution is called a normal 
quantile plot or sometimes a normal probability plot. For example, Figure 3
shows normal quantile plots for two distributions that were generated and com-
pared with a test distribution that is normal. The distribution on the left was 
based on a normal distribution with mean 50, standard deviation 5, and sample 
size 50. The distribution on the right was based on a uniform distribution 
with minimum and maximum of 35 and 65. As shown in Figure 3, the graph 
on the left shows most of the points falling on the diagonal line because 
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Fig. 3. Normal quantile plots of a normally distributed variable (left) and a 
uniformly distributed variable (right).
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the data were based on a normal distribution. However, the graph on the right 
shows the middle-most 60% of the data fall on the diagonal line, but the 
lower and upper 20% of the data show departure from the line, indicating a 
non-normal distribution.

An often utilized property of the normal distribution is the probability that 
a normally distributed variable lies within two standard deviations of the mean 
is 95.46% and within one standard deviation of the mean is 68.26%.

For example, 10,000 observations were generated based on a normal distri-
bution with a mean of 100 and a standard deviation of 10. Figure 4 shows a 
histogram of the normally distributed variable. Because the distribution is 
normal, we would expect approximately 68% of the values to fall between 90 
and 100 and approximately 95% of the values to fall between 80 and 120. The 
approximation is accurate because 96% of the observations fall between two 
standard deviations and 68% fall within one standard deviation. However, when 

60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

Normal (N=10,000) with Mean 100, S 10

Fig. 4. Histogram of a normal distribution with mean 100 and standard deviation 
10. The outer vertical lines (dots) show the values of mean ± 2 × s, and the inner verti-
cal lines (dashes) show the values of mean ± s.
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the shape of the distribution is not a normal distribution, this approximation is 
not adequate.

A box plot is a graph to examine the overall shape of a variable and is espe-
cially useful for comparing distributions of different groups of data (e.g., treat-
ment and control). Figure 5 shows an example of a box plot. The box shows 
the range of the middle 50% of the data, or the values that fall between the 
lower and upper quartiles, labeled C and E, respectively. The horizontal line, 
labeled D in the fi gure, drawn inside the box is the median. Whiskers, labeled 
B and F, are the small horizontal lines above and below the box and go to the 
extremes of the data. Whiskers are defi ned based on the interquartile range, 
which is C-E in the fi gure. The upper whisker is defi ned as C + 1.5 (C − E)
and the lower whisker is E − 1.5 (C − E). If the upper whisker is greater than 
the maximum, then the whisker is set to the maximum, and if the lower whisker 
is less than the minimum, then the whisker is set to the minimum. Points falling 
outside of the whiskers are shown by themselves and are considered extreme 
or outlining observations and are labeled A in Figure 5.

Figure 6 shows the same two distributions presented with histograms in 
Figure 2, both with a mean of 50 and a standard deviation of 5. The box plot 
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Fig. 5. Illustration of a box plot. A, outlier; B and F, whiskers; C and E, upper and 
lower quartiles; D, median.
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on the left is symmetric and the one on the right is positively skewed. The 
normally distributed variable shows a symmetric distribution with the whiskers 
and the ends of the box falling equally away from the median and, as expected, 
has only a few outliers. The positively skewed variable has a box (the 25th to 
75th percentiles) that is asymmetric, its quartiles and whiskers are not equally 
away from the median, and it has many outlier values.

5. Illustration
To illustrate the calculations above, data on time since liver transplantation, 

in years, for 24 female subjects is given in Table 2. The mean for time from 
liver transplant among females is 9.71 years and the median is 9.50 years. The 
range is 4 to 17 years and the IQR is 12.75 − 7.25 = 5.5. The variance is 13.18 
and the standard deviation is 3.63. The histogram and box plot are shown in 
Figure 7. Because the distribution is approximately normal, about 95% of the 
values would fall between 2.5 to 17.0 years 9.71 ± 2 × 3.63 = 9.71 ± 7.26 ⇒
(2.5 to 17.0 years). Note that all of the data, or 100%, fall within two standard 
deviations.

Normal Positively Skewed
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40

50
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80

Fig. 6. Box plot of normal and positively skewed distributions with mean 50 and 
standard deviation 5 (N = 500).
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Fig. 7. Histogram (left) and box plot (right) of time since transplant.

6. Presenting Variables Together
When reporting descriptive statistics, the precision used should be consistent 

both in the tables and in text. When reporting measures on categorical data, 
both percentages and frequencies should be given. Reporting both will avoid 
confusion in the calculation and also allows for percentages to be reported as 
integers. For example, a percentage of 82.45% can be reported as 82% if the 

Table 2
Data on Time from Liver Transplantation (in Years) 
for 24 Female Subjects

13  9  8 14  8  4
 9 10  6 17 16 12
 6  8  4  8 11  5
10  7 10 13 15 10
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frequency is also reported. When reporting measures on quantitative measures, 
summary measures should not be reported to more than one extra decimal 
place over the raw data (9). For example, mean age in years may be 13.245, 
but this should be reported as 13 years or 13.2 years if age was recorded as an 
integer.

Typically, a descriptive table contains information on more than one variable 
and is an effi cient method of reporting descriptive statistics. Tables are usually 
presented to describe variables because multiple bar charts would be wasteful 
of space. Both qualitative and quantitative variables should be combined in 
a table to describe particular sets or groups of data, such as baseline character-
istics. Table 3 shows an example of how both types of variables can be 
described together. Quartiles are frequently used for asymmetric distributions 
and means and standard deviations for symmetric distributions (10). Categories 
within a qualitative variable with only a few individuals should be combined 
if possible.

7. Logarithms and Other Transformations
The transformation and statistic selected is based on the distribution of a 

variable. The most important distribution for continuous variables is the normal 
distribution. If a variable is not normally distributed, one usually seeks a trans-
formation to normalize the distribution.

Table 3
Frequency Table of Variables (N = 500)

Age (years), quartilesa 50 (46, 52)
Female sex, n (%) 245 (49%)
Race, n (%)
 Black 78 (17%)
 White 399 (78%)
 Other 23 (1%)
Genotype of marker, n (%)
 AA 294 (59%)
 AG 177 (35%)
 GG 29 (6%)
Weight (lb), mean (s) 170 (14)
Side effects, n (%)
 0 320 (64%)
 1 or more 280 (36%)

aQuartiles are reported as 0.50 (0.25, 0.75) quantiles.
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Often, a transformation, not the raw variable itself, is used to describe and 
analyze data in molecular biology. For example, instead of using spot intensity 
data, the logarithm of spot intensity data is analyzed.

A logarithm, or log, transformation is most commonly used and is applied 
when the data are highly skewed to make it more symmetric. It is widely 
accepted that log-transformed expression data follows a bell-shaped curve (10).
Square root and cube root transformations are also used when analyzing spot 
intensity data. Logs have some useful properties for handling data. Two useful 
properties are log(a × b) = log(a) + log(b) and log(a/b) = log(a) − log(b). There-
fore, if the logs are used, multiplicative relationships become simpler additive 
relationships (12).

Log to the base 10, also called common logs, is commonly used in medical 
research, and log to the base 10 of x is written as log10(x). The three numbers 
1000, 100, and 10 are transformed on the log to the base 10 scale to log10(1000)
= 3, log10(100) = 2, and log10(10) = 1. If there are zero values where log(0) 
would be undefi ned, then log10(x + 1) is often used.

The natural log, abbreviated ln, is another useful log. The natural log is log 
to the base e where e is 2.71828  .  .  .  , a constant. Natural logs are very compa-
rable to using log to the base 2, which are typically used in microarray analysis. 
Using a log to the base 2 will transform the four numbers 16, 8, 4, and 2 to 
log2(16) = 4, log2(8) = 3, log2(4) = 2, and log2(2) = 1. Log to the base 2 should 
be used instead of log to the base 10 when the data range through just a few 
powers of 10 to avoid fractional powers of 10 (13). Because some statistical 
software packages do not have a log to the base 2 transformation (e.g., SPSS 
13.0; SPSS Inc., Chicago, Ill.), it may be necessary to use a formula for change 
of base. By using log to the base 10, log2(x) = log10(x)/log10(2). For example, 
log2(32) = log10(32)/log10(2) = 1.505/0.301 = 5.

Fold change is a statistic used in differentiating gene expression and is the 
ratio of two observations. Typically, two- or threefold differences are consid-
ered important, but these are often arbitrary thresholds (14). Caution should be 
used when interpreting fold changes. For example, for the raw values of 16 and 
4, the fold change is 16/4 = 4. However, on the log base 2 scale, the fold change 
is only 2.

8. Describing Multivariate Data
When describing multivariate data, simple descriptive statistics are used 

to summarize each variable individually. Then it is important to describe the 
relationship between the variables. For this step, the relationships between 
pairs of quantitative variables are described using Pearson or Spearman cor-
relation coeffi cients and are displayed with scatter plots (see Chapter 8). The 
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relationships between pairs of qualitative variables are described using tests of 
association for categorical data and displayed using contingency tables (2 × 2 
or R × C tables) (see Chapter 5). The relationships between pairs of variables 
conditional on the values of other variables should be displayed with a condi-
tional plot or coplot (15).

9. Distribution of Statistics
If a random sampling process is involved when selecting a sample, then the 

variables are called random variables (see Chapter 4). In fact, the term statistic,
or estimator, is used to refer to a rule that provides an estimate of a value that 
is characteristic of the population. The quantity computed from a sample is 
called an estimate, and the value from the population that is being estimated is 
called the parameter. The estimator is a random variable that varies from sample 
to sample and has its own distribution. The distribution of an estimator is called 
the sampling distribution of a statistic. The uncertainty or imprecision of an 
estimate is quantifi ed based on the variability of the sampling distribution. This 
variability is not natural variability but variability due to error and is called the 
standard error of an estimator. The standard error is important for inferential 
statistics when estimating statistics and comparing groups of data because it is 
used to construct margin of errors and confi dence intervals. Given the standard 
error, approximate 95% confi dence intervals are constructed by taking ± 2 ×
(standard error of the statistic) (see Chapter 4).

9.1. Distribution of the Mean

The sampling distribution of the mean has a sample mean, x̄, and its sample 
standard deviation is often called the standard error of the mean (abbreviated 
SEM). Recall that the standard deviation measures natural variability. There-
fore, for describing data, it is important to use the standard deviation as a 
measure of natural variability and not report the SEM. However, to quantify 
uncertainty of a statistic, such as the mean, the standard error of the statistic, 
such as the SEM, should be used. From a sample,

SEM =
s

n
.

That is, the variability due to error, the SEM, will be smaller for samples that 
are larger and for samples whose variability is lower (less dispersed). It is 
important to note that the sampling distribution of the mean will be normally 
distributed if the observations are normally distributed; or, based on the central 
limit theorem, the sampling distribution will follow a normal distribution even 
if the observations do not follow a normal distribution as long as the sample 
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size is large (3). Because it follows a normal distribution, twice the SEM rep-
resents the margin of error of the estimate.

9.2. Distribution of a Proportion

For categorical data, proportions are usually the statistic of interest, and the 
sample distribution of a proportion approximately follows a normal distribution 
for large samples (see Chapter 5). The approximation holds for proportions 
between 10% and 90% for sample sizes of 50 or greater (3). For dichotomous 
variables, the estimator is the sample proportion, p̂, or the number of events 
divided by the sample size. The standard error of this estimator is

ˆ ˆ
.

p p

n

× −( )1

Twice the standard error will represent the margin of error of the estimate if 
the normal approximation is adequate. For example, a study of antiseizure 
medication in 100 epileptic patients resulted in 20 patients with continuing 
seizures, giving an estimate of a proportion of p̂ = 20/100 = 0.20. The standard 
error of this sample statistic is

0 20 1 0 20

100
0 04

. .
. .

× −( )
=

Because the margin of error is defi ned as twice the standard error, the error of 
estimating the population proportion is 2 × 0.04 = 0.08. That is, we summarize 
the result as the proportion of patients without seizure freedom is estimated to 
be 0.20 with a margin of error of 0.08.

9.3. Distribution of the Variance

The sampling distributions for the mean and proportion follow a normal 
distribution for large sample sizes. However, the sampling distribution of the 
variance is asymmetrical. The estimator of the population variance is denoted 
as s2, as noted above. For the simple one-sample study, s2 has associated with 
it n − 1 d.f. If σ2 is the variance in the population, then

s n2

2

1× −( )
σ

follows a chi-square distribution, denoted c2, with n − 1 d.f. That is, the shape 
of the chi-square distribution depends on the number of d.f. For example, 
Figure 8 shows the shape of three distributions with d.f. equal to 1, 9, and 19. 
The higher the d.f., the more symmetric the distribution becomes.
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Fig. 8. Density plots of chi-square distribution with 1, 9, and 19 degrees of freedom 
(d.f.).

Solving for the population parameter σ2, we can quantify the imprecision of 
the estimate of the variance, which is

s n s n2

0 975
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1 1× −( )
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χ

σ
χ. .

,

where c 2
0.025 and c 2

0.975 represent the 2.5th and 97.5th percentiles of the chi-square 
distribution with n − 1 d.f.

For example, for the three distributions below in Figure 8, the corresponding 
chi-square values are shown in Table 4. Tables are usually provided in statistical 
textbooks and give the chi-square value for a given d.f.

If a study had 20 subjects and s2 = 10, then the uncertainty in estimating the 
variance of 10 is

10 19

32 852

10 19

8 907
5 82× ( )

≤ ≤
× ( )

=
. .

.σ to 21.3.
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Table 4
Chi-Square Distribution Values for the 0.025 and 
0.975 Quantiles for 1, 9, and 19 Degrees of 
Freedom

d.f. c 2
0.025 c 2

0.975

 1 0.001  5.024
 9 2.700 19.023
19 8.907 32.852

It appears more subjects are needed to estimate the variance with a greater 
precision. Confi dence intervals will be discussed in more detail in Chapter
4.

10. Conclusion
Describing the data and statistics of results is a vital part of any medical 

study. For any project, it is important to describe the characteristics of the study 
units so that readers can evaluate the relevance of the results to a particular 
population or setting (2). Additionally, the report of the standard error of a sta-
tistic is necessary to quantify the precision of the estimates, such as treatment 
effects. Whether the study results can be generalized to other populations and 
settings will be based on the use of adequate descriptive statistics and measures 
of uncertainty of the statistics. If little information is provided on the charac-
teristics of the study units and the outcomes, then it is doubtful that the results 
will be applied elsewhere. On the other hand, if sound descriptive statistics and 
measures of imprecision of the inferential statistics are given, then the study 
can be assessed for generalizability and may eventually be applied to other 
situations.
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Basic Principles of Statistical Inference

Wanzhu Tu

Summary
In this chapter, we discuss the fundamental principles behind two of the most frequently used 

statistical inference procedures: confi dence interval estimation and hypothesis testing. both 
procedures are constructed on the sampling distributions that we have learned in previous chapters. 
To better understand these inference procedures, we focus on the logic of statistical decision making 
and the role that experimental data play in the decision process. Numerical examples are used to 
illustrate the implementation of the discussed procedures. This chapter also introduces some of the 
most important concepts associated with confi dence interval estimation and hypothesis testing, 
including P values, signifi cance level, power, sample size, and two types of errors. We conclude the 
chapter with a brief discussion on statistical and practical signifi cance of test results.

Key words: Hypothesis testing; P value; point and confidence interval estimation; power; 
sample size; significance level; simultaneous inference; student t distribution; type I and type II 
errors.

1. Introduction
Statistical inference is a decision-making process. Different decision-making 

processes follow different decision rules. Medical decisions, for example, are 
usually based on the physician’s assessment of the patient, the physician’s 
clinical judgment, and the physician’s interpretation of treatment guidelines. A 
statistical decision process, or statistical inference, attempts to isolate the deci-
sion maker from his personal opinion and preference to achieve an objective
conclusion that is supported by the data. Two commonly encountered forms of 
statistical inference are parameter estimation and hypothesis testing. Although 
each is designed to address a different type of research question, both rely upon 
the sample data to justify their conclusion.
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In an estimation procedure, one uses sample information to estimate the 
value of an unknown parameter associated with a certain population. Herein, 
the term parameter is used to describe a particular numerical characteristic of 
a population. For example, the mean of a population is a parameter. Denoted 
by m, it depicts the central location of the population. The variance of the popu-
lation, denoted by s2, is another parameter. As a population parameter, s 2

quantifi es the magnitude of dispersion or the variability of the population.
The other form of statistical inference is hypothesis testing, which is primarily 

used to adjudicate the truthfulness of certain preconceived statements concerning 
the value of a population parameter. Hypothesis testing is a particularly popular 
form of statistical inference in biomedical research because it directly assesses 
the strength of data evidence either for or against a scientifi c proposition.

There are numerous established inference procedures. Researchers choose 
appropriate procedures based on the parameters of interest and experimental 
conditions under which the data are collected. Underlying the varying forms of 
statistical inference, however, are a set of principles that are common to all 
inference procedures. The purpose of the current chapter is to introduce these 
common principles and illustrate their application through several frequently 
used procedures, including confi dence interval estimation and hypothesis testing 
of population means and variances. The development of these procedures is 
mostly based on the distributions of the sample mean and sample variance 
introduced in the previous chapter. Also discussed are the interpretations of 
inference results, errors, and power. Finally, the chapter concludes with a brief 
discussion on the distinction between statistical and practical signifi cance.

2. Parameter Estimation
2.1. Point Estimation

Parameter estimation is a useful technique when the primary goal of the 
analysis is to estimate a certain numerical characteristic of a population. For 
example, a geneticist is often interested in estimating the allele frequencies of 
certain genes in a target population. A clinician may want to estimate the 
amount of viral shedding in patients with a certain infection. A biochemist may 
be interested in estimating the average concentration of a certain protein in a 
patient population. In each of these situations, the interest is to estimate a certain 
numerical quantity associated with a particular population.

With few exceptions, it is diffi cult for an investigator to directly assess each 
and every single member of the population. Therefore, directly calculating the 
population parameter of interest becomes logistically diffi cult, if not impossi-
ble. A practical way to achieve the goal of estimation is to rely on a sample of 
subjects, drawn from the intended population, and then use the sample data to 
estimate the unknown population parameter.
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Although it is easy to see the appeal of such a sample-based estimation 
approach, there are a few important factors that might infl uence the quality of 
the resulting estimate. First among them is the representativeness of the sample. 
The preferred scheme is to take a random sample from the target population. 
In this chapter, all of the procedures are presented under the assumption of 
random sampling. Another important consideration is the optimality of the 
estimate, which is the main topic of the remainder of the section.

A generic description for an estimation problem is as follows: Suppose that 
subjects, or elements, of a certain population are selected through a randomized 
experiment, and the observations obtained from these subjects form a sample.
Assuming that these observations follow a particular distribution with an 
unknown parameter, denoted as q, we attempt to use the sample data to estimate 
q. To achieve this goal, we need to have a rule for the estimation, usually 
expressed as a formula, that tells us how to calculate a numerical estimate based 
on the information provided by the sample. Such a rule, or formula, is referred 
to as an estimator. A numerical value of the estimator, usually computed from 
the sample, is called an estimate. If the true parameter is q, we usually write 
an estimator (or estimate) of q as q̂ . For example, an estimator for a population 
mean can be written as m̂.

The simplest form of estimation is to calculate a single-valued point from 
the sample and use it as an estimator of the unknown parameter. Such an esti-
mator is called a point estimator. Let’s consider the following example.

Example 1

Prostate specifi c antigen (PSA) is a protein produced by the cells from the 
prostate. The blood concentration of PSA is often used as a biomarker of pros-
tate cancer. Results under 4 ng/mL are usually considered normal. The higher 
the PSA level, the more likely a patient has prostate cancer. Because of this 
relationship, postproctectomy PSA has also been used to measure the success 
of the operation. Table 1 contains the PSA levels of 30 patients who had radical 
proctectomy, measured 6 months after the operation.

Table 1
Prostate Specifi c Antigen Levels (ng/mL) in 30 
Patients Who Underwent Proctectomy Measured 6 
Months after Operation

0.2 0.1 0.0 0.0 0.1 0.1
0.1 0.1 0.1 0.0 0.4 0.0
0.0 0.2 0.2 0.1 2.7 0.1
0.0 0.2 1.3 0.0 0.2 0.0
0.1 0.3 0.1 0.0 0.0 0.1
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If we believe that this sample of 30 patients is representative of the popula-
tion of prostate cancer patients who underwent radical proctectomy, we could 
use the data obtained from these patients to estimate the mean postoperation 
PSA value.

In a more general notation, we write X1, X2,  .  .  .  , Xn as a random sample from 
a population, where Xi represents the observation from the ith experimental unit, 
i = 1, 2,  .  .  .  , n. In this example, the experimental unit is the individual patient, 
the sample size is n = 30, and sample observations are X1 = 0.2, X2 = 0.1,  .  .  .  , 
X30 = 0.1. We now use this sample to estimate the mean postoperation PSA level 
µ of the population of prostate cancer patients who underwent proctectomy.

To estimate the population mean PSA level m, we could use any of the 30 
observed sample points as our estimator, that is m̂ = Xi for any i = 1, 2,  .  .  .  , 30. 
Depending on which sample observation we use, the value of the estimator takes 
a wide range, from 0 ng/mL to 2.7 ng/mL. Alternatively, we could use the sample

mean as our point estimator, µ̂ = = =∑X
n

Xi
n

i
1

1 , because, for a given sample, 
–
X

takes only a single value. For the PSA example, sample mean is 
–
X = 0.2267 ng/

mL. As this example demonstrates, for a given parameter, there may exist many 
point estimators. The question is which one of these is the “best” estimator.

In order answer this question, we must fi rst clarify what kind of properties 
we desire in an estimator. Intuitively, one of the desirable characteristics that 
we seek in an estimator is unbiasedness. In other words, a good estimator should 
neither consistently overestimate nor underestimate the parameter. Another 
property that we seek in an estimator is small variability. In other words, an 
ideal estimator should not vary too much from sample to sample. Combining 
these two characteristics, we want an estimator that has small variation while 
maintaining its unbiasedness. This leads to the concept of minimum variance 
unbiased estimator (MVUE). As its name indicates, an MVUE is an unbiased 
estimator, and it has the smallest variance among all unbiased estimators.

In the case of population mean, it can be shown that m̂ = –
X is indeed an MVUE, 

thus is superior to the estimator based on a single sample point, m̂ = Xi. To under-
stand this, let us compare m̂ = Xi and m̂ = –

X. Formally, we assume X1, X2,  .  .  .  , Xn

to be a random sample from a population with mean m and variance s 2. Because 
Xi is a sampling point from the population, we know that the expected value and 
variance of Xi are m and s 2, respectively; that is, E(Xi) = m and Var(Xi) = s 2. From 
the sampling distribution of the population mean, we know that E(

–
X) = m and 

Var(
–
X) = s 2/n. This demonstrates that both single sample point (Xi) and sample 

mean (
–
X) are unbiased estimators of m, but between the two, the sample mean 

–
X

has a smaller variance thus should be considered as the preferred estimator. The 
result of this comparison is hardly surprising: the sample mean depicts the central 
location of the sample. If the sample truly represents the subjects in the popula-
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tion, the sample mean will provide a reasonable estimate of the central location 
of the population. Indeed, it can be shown that 

–
X is an MVUE of m (1). Therefore, 

as a general principle, we usually use the sample mean 
–
X to estimate the popula-

tion mean m. Extending the same principle to the case of variance, we often use

sample variance s
n

X Xi
n

i
2

1
21

1
=

−
−( )=∑  to estimate an unknown population

variance s 2.

2.2. Confi dence Interval Estimation

Although a good point estimator may possess desirable properties such as 
those just discussed, many researchers feel that without any assurance of its 
“correctness,” a single-valued estimate is not particularly useful in a decision-
making process. A simple way to overcome this defi ciency is to specify a range, 
rather than a single value, for the estimation of a parameter. In other words, we 
hope to guarantee with a high probability that the true parameter is covered by 
this range. Such a range is called a confi dence interval of a parameter. The 
probability that guarantees the coverage is called the confi dence level.

To defi ne an interval mathematically, we need two values: a lower limit and 
an upper limit. Formally, if q is the true parameter and q̂ 1 and q̂ 2 are the two 
limit values that satisfy the following criterion,

P(q̂ 1 ≤ q ≤ q̂ 2) = 1 − a,

then the interval (q̂ 1,q̂ 2) is said to be a 100(1 − a)% confi dence interval estimate 
of q, where P is a probability measure, q̂ 1 and q̂ 2 are called lower and upper 
confi dence limits, respectively, and (1 − a) is called the confi dence level. In 
plain English, the above equation simply says that the probability that the 
interval (q̂ 1,q̂ 2) contains the true parameter q is 1 − a. In practice, we often 
specify a as a rather small number, say a = 0.05, thus the resulting confi dence 
level would be high, such as 95%. Later we shall see that a represents an error 
rate of the inference.

For confi dence intervals, we seek two properties simultaneously: The fi rst is 
a high confi dence level. Confi dence level can be viewed as an assurance of the 
correctness of the estimation. Without a high confi dence level, the estimation 
loses its credibility. The second is a narrow interval range. When the range is 
too wide, the estimation becomes less informative. For example, when we 
estimate a person to be between 5 and 95 years of age, the estimate essentially 
fails to convey any information on how old the person actually is. Unfortu-
nately, these two properties are inherently contradictory: With wider interval 
range, we become more confi dent that our estimate is correct. But when the 
range becomes wider, our estimation becomes less useful. Therefore, a careful 
balance must be maintained when we derive a confi dence interval.



58 Tu

2.2.1. Large Sample Confi dence Interval for the Mean

Formally deriving confi dence intervals for the population parameters exceeds 
the scope of the current chapter. Instead, we shall present a heuristic argument for 
the construction of large sample confi dence interval for the population means.

Suppose we have a population with an unknown mean parameter m. For 
simplicity, we assume the population variance, s2, is known. To estimate the 
mean, we take a large random sample X1,  .  .  .  , Xn, where n ≥ 30. As described 
in the previous section, we use the sample mean X X ni

n
i= =Σ 1 /  as a point esti-

mate for m.
To fi nd a (1 − a)100% confi dence interval for m, denoted by (m̂1,m̂2), we 

start from its defi nition. Suppose that m̂1 and m̂2 are two quantities that satisfy 
P(m̂1 ≤ m ≤ m̂2) = 1 − a. Simultaneously subtracting 

–
X from m̂1, m, and m̂2, and 

then dividing the differences by σ n , we have

P
X

n

X

n

X

n

ˆ ˆ
,

µ
σ

µ
σ

µ
σ

α1 2 1
−

≤
−

≤
−⎛

⎝⎜
⎞
⎠⎟

= −

or equivalently,
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X
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n
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−
≥

−⎛
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⎞
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= −
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σ
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σ
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According to the sampling distribution of 
–
X, we know that when the sample 

size is large, X n−( ) ( )µ σ  can be approximated by the standard normal 
distribution N(0,1). Thus we have the following equations,

X

n
z

X

n
z

−
=

−
= −

ˆ
,

ˆ
,

µ
σ

µ
σ

α α
1

2
2

2and

where za/2 is the cutoff point corresponding with a right tail area of a–2 under the 
standard normal distribution. Because of the symmetry of the standard normal 
distribution, −za/2 is the cutoff point in the left tail.

Solving these equations, we obtain

ˆ ,µ σ
α1 2= −X z

n

ˆ .µ σ
α2 2= +X z

n

Confi dence limits calculated from the above formulas will give us the desired 
100(1 − a)% confi dence interval estimate of m.

A few things need to be clarifi ed before we use this confi dence interval 
estimation procedure. The fi rst is the assumption that s is known. This assump-
tion, however, is unlikely to be true because the calculation of s depends on 
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m. Because m is unknown and is to be estimated, how could we know s? But 
for all practical purposes, this will not prevent us from using the procedure, 
because in large sample situations, unknown s can be reliably approximated 
by the sample standard deviation s. Therefore, when the true value of s is 
unknown, we calculate the large sample 100(1 − a)% confi dence interval for 
the mean as

X z
s

n
± α 2 .

The second issue is the interpretation of the above confi dence interval. If we 
use a = 0.05, the confi dence level (1 − a) will be 95%. In a specifi c experiment 
(or the sample generated from that experiment), the calculated confi dence 
interval either contains m or it does not. Although we do not know whether the 
confi dence interval that we calculated for this particular sample contains m or 
not, we do know that if we repeat the experiment many times and use the above 
procedure to construct confi dence intervals based on the resulting samples, 
about 95% of the confi dence intervals that we obtain will contain the true value 
of the population mean (2).

Example 1 (Continued)

Finally, to illustrate the use of the confi dence interval procedure introduced 
above, we revisit the PSA example: Using the sample of 30 prostate patients, 
we fi nd the point estimate of the mean postoperative PSA value to be 
–
X = 0.2267. The 95% confi dence interval estimate is calculated as follows:

X z
s

n
±

± ×

α 2

0 2267 1 96
0 5252

30
0 0388 0 4146

,

. .
.

,

( . , . ).

Therefore, we are 95% confi dent that the mean postprostatectomy PSA level is 
between 0.0388 and 0.4146 ng/mL.

2.2.2. Student t-Distribution

As we see in the previous section, the construction of a large sample confi -
dence interval for m is based on the sampling distribution of 

–
X. We know that 

when the sample size is large, the standard normal distribution N(0,1) can be 
used to approximate the behavior of the quantity n X sµ −( ) . But when the 
sample size is not large, such approximation may not work as well. In this 
section, we discuss the sampling distribution of n X sµ −( )  when the sample 
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size is small or moderate. The behavior of this distribution, called t-distribution,
is very similar to that of the standard normal distribution when the sample size 
is large (often defi ned as n ≥ 30). But it works equally well for smaller 
samples.

We fi rst give a verbal description of the t-distribution. The density curve of a 
t-distribution is quite similar to that of the standard normal distribution. It is 
bell-shaped, symmetric around zero, but with tails heavier than those of the 
standard normal curve. The t-distribution has only one parameter, its degrees of 
freedom (d.f.). The larger the degrees of freedom, the smaller the variance. The 
mean of a t-distribution is always zero; the variance is d.f./(d.f. − 2). It can also 
be shown that when the degrees of freedom of the distribution approaches infi n-
ity (d.f. → ∞), a t-distribution approaches the standard normal distribution.

With the t-distribution, we are now able to describe the behavior of 
n X sµ −( ) . Suppose we select a random sample X1,  .  .  .  , Xn from a normally 

distributed population, N(m, s 2). Let 
–
X and s2 be the sample mean and variance, 

respectively. Then T X s n= −( )µ ( ) follows a Student’s t-distribution with 
n − 1 degrees of freedom, where n is the sample size.

In other words, if the population is normally distributed, statistic 
T X s n= −( )µ ( ) has a t-distribution with n − 1 degrees of freedom. This is 
true regardless of the sample size. With this distribution, we will be able to 
make inferences concerning the population means, even when sample size is 
not large.

2.2.3. Small Sample Confi dence Interval for the Mean

Mimicking the arguments in the large sample case, we construct the 
100(1 − a)% confi dence interval for m using the t-distribution,

X t
s

n
± α 2 ,

where ta/2 is the a/2th quantile of the t-distribution with n − 1 degrees of 
freedom.

The t confi dence interval has a structure that is parallel to the large sample 
confi dence interval based on the standard normal distribution. Although it is 
designed for the estimation of population means in small sample cases, it 
can also be used for any sample size. In fact, as the sample size increases to 
n ≥ 30, the numerical value of ta/2 approaches za/2, thus the confi dence limits 
calculated from the small sample procedure are essentially identical to those 
calculated from the large sample procedure. For this reason, many standard 
statistical software packages only provide confi dence intervals based on the 
t-distribution.
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Example 2

B-type natriuretic peptide (BNP) is released from the cardiac ventricles in 
response to increased wall tension and thus can be used as a marker for conges-
tive heart failure (3). In a local clinic, BNP levels of 20 heart failure patients 
were obtained from bedside assay. Fourteen of the patients were further classi-
fi ed as the New York Heart Association (NYHA) class II and six as class III. 
In the sample of NYHA class II patients, the mean BNP level was 412 pg/mL 
and the sample standard deviation was 231 pg/mL. For NYHA class III patients, 
the mean BNP level was 731 pg/mL and the sample standard deviation was 
402 pg/mL. Using the sample information, we construct a 95% confi dence 
interval for the mean BNP level of NYHA class II patients:

X t
s

n
±

±

α 2

412 2 1604
231

14
278 6 545 4

,

. ,

( . , . ),

where ta/2 = t0.025 = 2.1604 was obtained from the t-distribution with d.f. = 14 − 1 
= 13. Therefore, we conclude that based on the evidence provided by this small 
random sample, we are 95% confi dent that the mean BNP level of NYHA class 
II patients is between 278.6 pg/mL and 545.4 pg/mL.

2.2.4. Simultaneous Inference: Bonferroni’s Multiplicity Adjustment

Similarly, one may proceed to use the information from the six NYHA class 
III patients to obtain a confi dence interval estimate of the mean BNP level of 
NYHA class III patients. Although this is very easy to do computationally, one 
must be clear about the methodological consequence of making multiple infer-
ences in one experiment. For one thing, the 95% confi dence level that we are 
citing is only valid for each individual inference, not for the entire experiment. 
In other words, when we construct a 95% confi dence interval for the mean BNP 
level of NYHA class II patients, we allow 5% error in our inference. When we 
repeat the same procedure for the NYHA class III patients, we allow another 
5% error. Thus, the overall error rate for the entire experiment will be larger 
than the professed 5%. Intuitively, this is not diffi cult to understand: If there is 
only one inference, we have 5% chance to make a mistake. If we conduct 100 
inferences, each with 5% error rate, we will make 5 mistakes in 100 inferences 
on average just by chance. Therefore, as the number of the inferences increases, 
the confi dence level we have for the entire experiment decreases. This can be 
a very serious problem when a large number of inferences are involved. For 
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example, one microarray experiment may involve several thousand genes. If 
we set the inference error rate at 5%, we could expect to see hundreds of invalid 
inferences in one experiment. To guard against such infl ated error rate, we often 
need to control the experiment-wise error (i.e., the overall chance of making 
an incorrect inference) rather than the error associated with a specifi c inference. 
A general class of methods for such adjustments are often referred to as simul-
taneous inference.

One of the popular simultaneous inference procedures is called the 
Bonferroni method. The basic idea of Bonferroni’s approach is to reduce the 
individual inference error rate to a lower level so that the experiment-wise error 
rate can be controlled at the nominal level of a100%. Specifi cally, if there are 
k inferences, we construct the (1 − a)100% confi dence interval using ta/(2k)

instead of ta/2.
Bonferroni’s adjustment is based on the well-known Bonferroni inequality, 

a probability inequality. So the method is not exact, (i.e., the resulting experi-
ment-wise error rate would be no more than a). At times, the Bonferroni 
adjustment may result in an experiment-wise error rate much less than the stated 
level. Therefore, it is often regarded as one of the more conservative multiplic-
ity adjustment procedures.

Using the Bonferroni procedure, we can calculate the mean BNP levels for 
NYHA classes II and III patients as (255.6, 568.4) and (315.4, 1146.6), respec-
tively. Note that these intervals are considerably wider than the unadjusted 
ones, suggesting the loss of precision as a result of the increased error rate. It 
should be pointed out that the Bonferroni adjustment may be too conservative 
(i.e., resulting intervals are too wide) for many applications. To alleviate, many 
alternative adjustment methods have been proposed (see Chapter 7 for a more 
in-depth discussion on the subject).

2.2.5. Confi dence Interval for the Variance

Occasionally, our research requires inference on population variances. In 
Section 2.1, we have stated that the point estimate of the population variance 
s 2 is its sample counterpart s2 (i.e., ŝ 2 = s2). This section describes the construc-
tion of a confi dence interval estimate of s 2 using the sampling distribution of 
s2. Specifi cally, let X1,  .  .  .  , Xn be a random sample from a normally distributed 
population with mean m and variance s 2. The quantity (n − 1)s2/s 2 follows a 
chi-square distribution with n − 1 degrees of freedom, that is,

( )
~ .( )

n s
n

−
−

1 2

2 1
2

σ
χ

We therefore have
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σ
χ αα α1 2
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⎞
⎠⎟ = −

( )
,

where c1−a/2, and ca/2 respectively correspond with the (1 − a/2)th and (a/2)th
quantiles in a chi-square distribution with n − 1 degrees of freedom. From this, 
we obtain the 100(1 − a)% confi dence interval estimate of variance s 2 as
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Example 3

To estimate the variation of a particular model of bone density scanner, the 
manufacturer of the scanners randomly selected four of its machines for testing. 
In measuring a standard of known density, the four selected scanners produced 
the following readings: 4.1, 4.0, 3.9, 3.9. Give a 95% confi dence estimate of 
the variance of this model of bone scanner when the scanners are used to 
measure the standard. We fi rst calculated the sample variance s2 = 0.0092. The 
95% confi dence estimate of the variance of this model of bone scanner is 
then
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where 0.2058 and 9.3484 are the 2.5th and 97.5th percentiles, respectively, of 
the chi-square distribution with 3 degrees of freedom. Based on the above cal-
culation, we can claim with 95% confi dence that the variance of the measuring 
instruments is between 0.003 and 0.1341.

2.2.6. One-Sided Confi dence Intervals

The discussion of confi dence intervals so far has been of two-sided intervals. 
That is, we provide lower and upper limits on the parameter of interest. We can 
also defi ne one-sided confi dence intervals that consist only of a lower confi -
dence limit or only an upper confi dence limit. A lower one-sided 100(1 − a)%
confi dence interval estimate of q satisfi es the following criterion

P(q̂ 1 ≤ q) = 1 − a.

An upper one-sided 100(1 − a)% confi dence interval estimate of q satisfi es the 
following criterion
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P(q ≤ q̂ 2) = 1 − a.

One-sided confi dence intervals are calculated using the similar formulae as for 
two-sided intervals. Instead of using the a/2 and 1 − a/2 quantiles of the refer-
ence distributions, we use either the a or the 1 − a quantile.

Example 2 (Continued)

The lower confi dence limit of a one-sided 95% confi dence interval for the 
mean BNP level of NYHA class II patients is

X t
s

n
−

−

∞

α ,

. ,

( . , ),

412 1 7709
231

14
302 7

where ta = t0.05 = 1.7709 was obtained from the t-distribution with d.f. = 14 − 1 
= 13. We would conclude that we are 95% confi dent that the mean BNP level 
of NYHA class II patients is greater than 302.7 pg/mL. The upper confi dence 
limit of a one-sided 95% confi dence interval for the mean BNP level of NYHA 
class II patients is

X t
s
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+

−∞

α ,

. ,

( , . ).
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231

14
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We would conclude with 95% confi dence that the mean BNP level of NYHA 
class II patients is less than 521.3 pg/mL. In practice, we would use one of the 
one-sided confi dence intervals or a two-sided interval.

3. Hypothesis Testing
3.1. Understanding Hypothesis Testing

Another form of statistical inference is hypothesis testing. Hypothesis testing 
uses sample information to decide the truthfulness of a prespecifi ed statement 
concerning a certain population parameter. The procedure leads to a decision 
of either rejecting or not rejecting the statement. The statement being tested is 
often referred to as a hypothesis.

A typical hypothesis testing procedure involves 5 steps:
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 1. Formulating the null hypothesis (denoted as H0) and the alternative hypothesis 
(Ha).

 2. Specifying the signifi cance level (a).
 3. Computing the value of the test statistic.
 4. Determining the rejection region.
 5. Stating a conclusion.

The essence of this 5-step procedure is to specify a proposition and then use 
the sample data to disprove it. The fi rst step is to formulate the proposition of 
interest into a testable hypothesis. To be more exact, we formulate two contra-
dicting statements: the null hypothesis (H0) and the alternative hypothesis (Ha).
By giving two contradicting hypotheses, we will force the decision maker to 
either reject or not reject the null hypothesis. Theoretically speaking, it should 
not matter which statement is specifi ed as the “null” and which as the “alterna-
tive.” However, for the convenience of defi ning the types of errors later in the 
chapter, we consider statements representing the status quo, no change, or equal
as the null. The alternative is then reserved for statements implying a change,
inequality, greater than, less than, and so forth. Under this convention, when 
we formulate the hypotheses into mathematical expressions, the equals sign “=”
always appears in the null statement.

Using a generic notation, we denote the parameter of interest as q. For tests 
concerning q, there are three commonly encountered pairs of hypotheses:

 1. two-sided test: H0 : q = q0 versus Ha : q ≠ q0;
 2. one-sided test: H0 : q ≥ q0 versus Ha : q < q0;
 3. one-sided test: H0 : q ≤ q0 versus Ha : q > q0,

where q0 is the hypothesized value for the test.
In theory and in practice, hypotheses of interest come in various forms and 

are by no means restricted to the three pairs listed above. In this chapter, 
however, we shall use the hypotheses of such simple forms to illustrate a typical 
testing procedure. The same reasoning process is easily extended to hypotheses 
of difference forms.

The second step in testing a hypothesis is to specify a signifi cance level. The 
signifi cance level (denoted as a) is a prespecifi ed maximum probability of 
incorrectly rejecting the null hypothesis when it is true. It represents the 
maximum amount of risk that one is willing to take when he or she rejects the 
null hypothesis. Naturally, we would like to set this level low. For example, 
the most commonly used signifi cance level is a = 0.05. As we will discuss later 
in the chapter, the signifi cance level represents the maximum allowable type I 
error of the inference procedure.

The third step is to compute the value of the test statistic. Hypothesis testing 
is about making a decision using the information that comes from a sample. A 
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test statistic is a quantity that measures the discrepancy between the null 
hypothesis and the sample data. Its value depends on the sample1 and its sam-
pling distribution has to be known when the null hypothesis is true. In interpret-
ing the statistic, a “large” value of the test statistic implies a more pronounced 
disagreement between the data information and the null hypothesis, suggesting 
that the data do not support the null statement and the null statement should be 
rejected.

But how large is large? That is the key question we address in the fourth 
step. From an operational point of view, we need a rule to help us to decide 
whether the test statistic is indeed too large for the null hypothesis to be true. 
Such a rule is often expressed as a rejection region. Loosely speaking, a rejec-
tion region is simply a range of values such that we reject the null hypothesis 
if the test statistic falls in this region.

Finally in the fi fth step, we state our conclusion of the test in the context of 
the problem.

The basic idea behind these 5 steps is very similar to that of a proof by con-
tradiction. Let’s compare the two:

 1. Proof by contradiction: We fi rst assume that A is true. From A we derive B. If B
is known to be false, then we claim that A cannot be true. Thus the assumption 
that A is true must be rejected.

 2. Hypothesis testing: We fi rst assume that the null hypothesis is true. Under this 
assumption, the test statistic follows a known sampling distribution. If the test 
statistic takes a value that implies the data are probably contradicting the null 
hypothesis, then we reject the null hypothesis and conclude that H0 is unlikely to 
be true.

To illustrate, we consider a classic example of proof by contradiction by 
Euclid (c.325–265 BC):

Example 4

Suppose that we want to prove that there does not exist a “largest prime 
number.” We fi rst assume that there exists a largest prime number, which we 
refer to as p. Then we let x be 1 plus the product of all prime numbers between 
1 and p (i.e., x = 1 ⋅ 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅  ⋅  ⋅ p + 1). Clearly, x has no prime factors 
between 1 and p because dividing x by any of the prime factors would leave a 
remainder of 1. Hence by defi nition, x is a prime number. Because x > p, we 
have found a prime number that is larger than the “largest prime number” p.
Therefore, p cannot be the largest prime number, and we must reject the 
assumption that there exists a largest prime number.

1 So it is a statistic and a random variable!
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The logic of a hypothesis testing is almost entirely parallel to that used in 
the proof of contradiction. The only difference is that in hypothesis testing, we 
use probability statements instead of the “absolute” judgments.

3.2. One-Sample t-Test

We now reconsider the PSA example as a testing problem. In the process, 
we will construct a test statistic for inference about the population mean.

As we discussed earlier, prostate specifi c antigen (PSA) is an important 
biomarker for prostate cancer. Ideally, the postoperation PSA value should drop 
to an undetectable level (i.e., 0 ng/mL) shortly after surgery. But in most 
patients, PSA values will gradually increase over time. Visually examining the 
PSA values in the sample, we see that 1 year after surgery, the PSA values in 
most patients are no longer zero. The question is whether the mean PSA level 
of this patient population is signifi cantly higher than zero. To answer this ques-
tion, we test the following hypotheses: H0 : m = 0 ng/mL versus Ha : m > 0 ng/mL, 
where m is the mean PSA level measured 12 months after the surgery. The 
rejection of the null hypothesis implies that the PSA has become detectable.

In a more generic notation, the null hypothesis can be written as H0 : m = m0

and the alternative as Ha : m > m0. We assume that the random sample X1,  .  .  .  , 
Xn comes from a normal population. When the null hypothesis is true, the popu-
lation mean is m = m0 and the quantity T n X s= −( )µ0 /  follows a t-distribution
with n − 1 degrees of freedom.

Let us assume that H0 is true. Because the density of a t-distribution can be 
characterized as a bell-shaped curve that is symmetrical around zero under the 
null hypothesis, T n X s= −( )µ0 /  is likely to take a value near the distribution 
center (zero). Therefore, in the unlikely event of an extremely large T value, 
we have to wonder whether we have made a mistake in assuming H0 : m = 0 to 
be true. In fact, the further away T is from zero, the more likely that H0 is false. 
Following this logic, when T takes a very large value, we will have no other 
choice but to reject the null hypothesis H0.

Examining the structure of T, we see that the magnitude of the T value 
refl ects the level of discrepancy between the null hypothesis H0 : m = m0 and the 
sample information. When the two agree, the T value tends to be small in the 
absolute value. When the two disagree, the magnitude of |T| will be large (i.e., 
T takes on an unlikely value). When T takes an unlikely value, we reject H0. It 
is now clear that T plays a role that is instrumental in deciding whether we 
should reject the null hypothesis or not. In statistics, quantities such as T are 
often referred to as test statistics. They are statistics because their values depend 
on the sample data. They can be used in hypothesis testing because they have 
known sampling distributions under the null hypotheses so we know which 
values are likely and which ones are unlikely.
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With the value of the test statistic T calculated, we are ready to decide on 
the hypotheses. The range of T values that leads to the rejection of the null 
hypothesis is called the rejection region. Intuitively, the reject regions have to 
be in the tails of the t-curve. Table 2 summarizes the rules we use to defi ne the 
rejection regions.

Now we complete the PSA example following the 5-step procedure. Let m
be the mean PSA level measured 1 year after proctectomy.

 1. H0 : m = 0 ng/mL versus Ha : m > 0 ng/mL.
 2. We set the signifi cance level at a = 0.05.
 3. Computing the value of the test statistic, we have

T
X

s n
=

−
=

−
=

µ0 0 2267 0

0 5252 30
2 3642

.

.
. .

 4. For the t-distribution with d.f. = 30 − 1 = 29 degrees of freedom, T0.05 = 1.699. So 
we should reject the null hypothesis if T > 1.699. Because T = 2.3642 > 1.699,
we reject the null hypothesis.

 5. The sample evidence indicates that 1 year after proctectomy, the mean PSA level 
in prostate cancer patients is signifi cantly greater than zero.

3.3. An Alternative Decision Rule: P Value

The 5-step procedure introduced above involves the use of a preselected
signifi cance level a. So the maximum tolerable risk of incorrectly rejecting the 
null hypothesis is subjectively determined. The procedure is not particularly 
fl exible, because in rejecting the null hypothesis, we only know that the 
error rate is not more than a, and have no idea how large the error rate 
actually is.

In hypothesis testing, the actual probability of incorrectly rejecting the null 
hypothesis given the sample observations is often called the P value or the 
observed signifi cance level of the test. By defi nition, if a test yields a “large” 
P value, then there will be a “large” risk of committing an error in rejecting 
the true null hypothesis. A small P value, on the other hand, implies that there 
is little chance of making a mistake if the null hypothesis is rejected. Therefore, 

Table 2
Reject Regions for the Test of Population Mean m

Alternative hypothesis Rejection region

m < m0 T < −Ta

m > m0 T > Ta

m ≠ m0 T < −Ta/2 or T > Ta/2



Basic Principles of Statistical Inference 69

as a decision rule, we reject the null hypothesis when the P value is small. When 
this happens, we say the test result is statistically signifi cant.

The computation of the P value in a hypothesis test is simple: Because we 
reject the null hypothesis only when the value of the test statistic is in the tail(s), 
the tail area defi ned by the test statistic represents the probability of incorrectly 
rejecting the null hypothesis. To be more exact, we only need to compute the 
corresponding tail area under the t density curve using the value of the test 
statistic T as a cutoff point in a one-tail situation. For the cases involving two-
sided tests, we simply multiply the one-side tail area by 2 to take into account 
the areas in both tails.

Thus, we have an alternative procedure of hypothesis testing using the P
value:

 1. Formulating the null hypothesis (H0) and the alternative hypothesis (Ha).
 2. Computing the value of the test statistic.
 3. Computing the P value.
 4. Stating a conclusion.

We now illustrate this new procedure by reanalyzing the PSA data. Let m be 
the mean postoperation PSA level of prostate cancer patients.

 1. H0 : m = 0 ng/mL versus Ha : m > 0 ng/mL.
 2. Computing the value of the test statistic, we have

T
X

s n
=

−
=

−
=

µ0 0 2267 0

0 5252 30
2 3642

.

.
. .

 3. The tail area that corresponds with T ≥ 2.3642 is P(T ≥ 2.3642) = 0.0125. This P
value of 0.0125 says if we reject the null hypothesis, there will be a 1.25% chance 
for us to make a mistake. Because the risk for an error is very small, we choose 
to reject the null hypothesis.

 4. This testing procedure again confi rms that the mean PSA level in prostate cancer 
patients is greater than zero 1 year after proctectomy.

In practice, data analysts usually have the aid of various statistical computing 
programs to carry out computational tasks required by inference procedures. 
Thus, the issue is often not so much about the computation of the P values but 
how to interpret them. For example, in the PSA data example, we have a P value 
of 0.0125 and we decide that 1.25% error rate is a small risk to take when we 
reject the null hypothesis. But there is no scientifi cally compelling reason for 
others to share our decision rule. In fact, a frequently asked question is when is 
a P value considered small and, therefore, when should a signifi cant test result 
be declared? Unfortunately, there is no short answer to this question that is uni-
versally agreed upon by all scientists. Whereas some scientists favor the adop-
tion of 0.05 as the threshold for the rejection of H0 in all situations, others argue 
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for more fl exibility. From the perspective of statistical decision making, the P
value is simply an indicator of the strength of data evidence against the null 
hypothesis. The stronger the evidence against H0, the smaller the P value and 
the less the chance of incorrect rejection. Under this general principle, with a 
given P value, the investigator always retains the fl exibility to reject or not to 
reject the null hypothesis. But in case she decides to reject, we will know the 
chance of a mistake. By reporting this P value, the investigator has given the 
readers a chance to assess the strength of the evidence. This is why many sci-
entists consider the P value method more advantageous than the rejection 
region method.

3.4. Errors, Power, and Sample Size

No decision-making process is completely error-free. Although our discus-
sion has so far focused on the error rate of incorrectly rejecting a null hypoth-
esis, statistical testing is actually subject to more than one type of error. One 
makes a mistake in rejecting the null hypothesis if the null is true (called a type 
I error); and one makes a different kind of mistake by not rejecting the null 
when it is false (called a type II error).

Table 3 summarizes the situations leading to the occurrence of errors.
Here, a is the type I error rate (i.e., the conditional probability of rejecting 

the null hypothesis given that the null hypothesis is true); b is the type II error 
rate (i.e., the conditional probability of failure to reject the null hypothesis when 
the null is false). Ideally, one hopes to keep both a and b low. Journal editors 
routinely require the authors to specify the maximum value of the type I error 
rate (a) or the P values for statistical tests, which is not particularly diffi cult to 
do. But they rarely ask for a type II error rate b. Indeed, specifying a type II 
error rate is a signifi cantly more diffi cult task to accomplish, because this error 
can happen under many different values of the alternative hypothesis. Once the 
data are collected, we are left with no real options to control this error. There-
fore, we often try to control it in the design stage of the experiment. To be more 
exact, we can control the power (1 − b) of the test by properly adjusting the 
sample size n. We usually require the power to be at least 80% (which implies 
that the type II error rate b is at most 0.2).

Table 3
Types of Errors in Hypothesis Tests

Decision H0 is true Ha is true

Reject H0 Type I error (a) Correct decision (1 − b)
Do not reject H0 Correct decision (1 − a) Type II error (b)
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For a large sample test of a population mean m, the sample size required to 
guarantee a (1 − b) power at signifi cance level a is

n
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where ∆ is the difference to be detected by the test, and za/2 and zb are the z
values corresponding with the right tail areas of a/2 and b, respectively, in a 
standard normal distribution.

Again, we consider the PSA example.

Example 5

Assuming a standard deviation of 0.6 ng/mL, if we intend to detect a 0.20 pg/
mL change in the mean PSA level with 0.05 signifi cance level and 80% power 
in a two-sided test, how many patients do we need for the test?

Sample size calculation for the PSA example: Following the above formula, 
the required sample size can be calculated as
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3.5. Statistical Signifi cance and Practical Signifi cance

When we reject a null hypothesis with a small P value, we say the result is 
statistically signifi cant. In most practical situations, this simply means that a 
change (or difference) has been detected by our test. It does not imply that the 
change (or the difference) itself is of any practical importance. For example, it 
is possible that we detect a change of 2 mm Hg in systolic blood pressure 
between two patient groups. The result is statistically signifi cant, but clinically 
the change is quite trivial.

On the other hand, when there is a change of real clinical signifi cance, a 
statistical test may not be able to detect it if the sample size is not large enough 
(insuffi cient sample size leads to the lack of testing power)! Keep in mind that 
these two concepts originate from two different decision-making processes, and 
we should not equate one with the other.

Having studied principles of testing a statistical hypothesis, we now face the 
ultimate challenge: how to make our statistical tests practically relevant? This 
question should be addressed from two different aspects:

 1. The hypotheses should refl ect practically signifi cant changes. In other words, the 
amount of change we intend to test should be of some practical importance.

 2. When we design the experiments, we should always choose a sample size that 
gives us a reasonable chance to detect a practically meaningful change. In the 
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absence of a careful sample size estimate, a statistically nonsignifi cant test result 
should never be interpreted as evidence of “no difference.”
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Statistical Inference on Categorical Variables

Susan M. Perkins

Summary
Categorical data are data that capture a characteristic of an experimental unit (such as a tissue 

specimen) rather than a numerical value. In this chapter, we fi rst describe types of categorical 
data (nominal and ordinal) and how these types of data are distributed (binomial, multinomial, 
and independent multinomial). Next, methods for estimation and making statistical inferences 
for categorical data in commonly seen situations are presented. This includes approximation of 
the binomial distribution with a normal distribution, estimation and inference for one and two 
binomial samples, inference for 2×2 and R×C contingency tables, and estimation of sample size. 
Relevant data examples, along with discussions of which study designs generated the data, are 
presented throughout the chapter.

Key Words: Binomial distribution; chi-square test; Fisher’s exact test; McNemar’s test.

1. Introduction
1.1. What Is Categorical Data?

Categorical data is data that captures a characteristic of an experimental unit 
(such as a tissue specimen) rather than a numerical value. For example, a 
Western blot is a laboratory procedure that can be used to identify and quantify 
protein levels in a sample. When performing a Western blot, a researcher may 
be interested in the presence or absence of a protein (a characteristic) rather 
than a numerical value indicating the relative amount of protein expression.

There are several types of categorical data:

Nominal data: The levels of a variable do not have an inherent ordering. Examples 
include race (African American, Asian, Caucasian, or Other) and blood phenotype 
(A, B, AB, or O).
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Ordinal data: There is an inherent ordering of the levels of a variable, but it cannot be 
assumed that the differences between two adjacent levels are the same in magnitude. 
Examples include disease severity (mild, moderate, or severe) and weight (under-
weight, normal weight, overweight, obese). Note that in these examples, there is no 
reason to assume that the increase in disease severity from mild to moderate is the 
same as the increase from moderate to severe or that differences in weight would 
be the same when comparing underweight to normal-weight individuals as when 
comparing normal-weight to overweight individuals.

Categorical data is often described using either percentages or counts. For 
example, in the general U.S. population, blood phenotype can be described as 
42% A, 10% B, 45% O, and 3% AB. When the interest is in describing the 
cross-classifi cation of 2 categorical variables, the data is often placed into a 
table as shown in Example 1.

Example 1

In a study looking at the associations between variants in the IGF2 gene and 
Beckwith-Wiedemann syndrome (a fetal overgrowth disorder), researchers col-
lected the data shown in Table 1 on a particular polymorphism (T123C) of the 
gene in subjects with and without the syndrome (1). Such tables are referred to 
as frequency or contingency tables and are further characterized by the number 
of levels of the row variable (R) and column variable (C). Table 1 is a 2×2
table because there are 2 levels of presence of disease (absent or present) and 
2 levels of variant type (1 or 2).

1.2. Categorical Data Distributions

When there are only two levels of a categorical variable, the variable is often 
called a binary or dichotomous variable. Binary variables can be thought of and 
treated statistically as either nominal or ordinal. When there are more than 2 
levels of a categorical variable, the variable is called a multinomial or polyto-
mous variable. These variables can be classifi ed as either nominal or ordinal 

Table 1
Beckwith-Wiedemann Syndrome and T123C 
Genetic Variant

Beckwith- Variant
Wiedemann
syndrome Type 1 Type 2 Total

Absent 79 157 236
Present  50  96 146
Total 129 253 382
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but not both. In order to develop an understanding of categorical data distribu-
tions, let us consider the following 2 examples, one a case-control study and 
the other a cross-sectional study.

Example 1 (Continued)

Using the Beckwith-Wiedemann example shown in Table 1, the researchers 
selected 2 patient samples, one sample having Beckwith-Wiedemann syndrome 
(cases) and the other not (controls). In each sample, the researchers then looked 
for the presence of the 2 variant types. In this case, within each sample, the 
numbers of subjects with variant type 1 and variant type 2 follow binomial 
distributions.

Example 2

Researchers were interested in developing a prediction rule to predict the 
development of diabetes in older adults (2). In Table 2, all 1549 participants 
in the study were cross-classifi ed on whether they had lower or higher trigly-
ceride levels and whether or not they had a normal or abnormal glucose toler-
ance test (GTT). In this example, a single sample of subjects is observed at one 
point in time, so the 2×2 table is from a single multinomial sample.

1.3. General Notation

Consider a sample of n objects (people, rats, etc.) where the sample is divided 
into several levels (e.g., survived or died). Let nj be the number of objects in 
level j, j = 1 to J. The counts {n1,  .  .  .  , nJ} follow what is called a multinomial
distribution. As a special case, if the number of levels is 2 (J = 2), the counts 
are said to follow a binomial distribution. Another representation of a multino-
mial distribution arises when the sample of n objects is cross-classifi ed by 
2 factors (such as triglyceride level and GTT levels in Example 2). In this 
case, the resulting counts are denoted as {nij, i = 1 to I, j = 1 to J}. The general 
convention is that i indexes the row variable and j the column variable.

Table 2
Glucose Tolerance Test and Triglyceride Level

 Triglycerides

GTT level <150 mg/dL ≥150 mg/dL Total

Normal  858 177 1035
Abnormal  364 150  514
Total 1222 327 1549
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When a researcher obtains I independent samples, instead of obtaining a 
sample of n objects, and classifi es each sample into J levels (as in Example 1),
the resulting counts have an independent multinomial distribution, still denoted 
by {nij, i = 1 to I, j = 1 to J}. In the notation above, we have specifi ed the 
independent sample an object is taken from as the row variable and the levels 
each sample is classifi ed into as the column variable; however, in the methods 
described in this chapter, it does not matter in practice which is the row or 
column variable.

The only distinction between the multinomial and independent multinomial 
distributions is how many independent samples are obtained (1 or more than 
1, respectively). Fortunately, as will be noted further in Section 4.1 and Section
4.4, the statistical tests have the same form, regardless of whether the counts 
have a multinomial or independent multinomial distribution.

1.4. Statistical Analysis Using Categorical Data

Many estimation and inferential methods used for performing statistical 
analyses for categorical data utilize either normal or chi-square distribution 
approximations. These approximations are valid for large sample sizes. When 
the sample size is small enough so that the statistics cannot be assumed to have 
these distributions, estimation and inference can sometimes be based on the 
exact distribution of the data.

In the following sections, we will fi rst discuss how to approximate the bino-
mial distribution with the normal distribution. Second, we will examine estima-
tion and inference for a proportion from a single population and compare 2 
proportions from 2 independent populations. Third, we will discuss how the 
chi-square distribution is used to test the association between two variables and 
how to test for association when the assumptions of the chi-square test do not 
hold. Finally, we will discuss inference for 2 dependent proportions.

2. The Binomial Distribution and the Normal Approximation 
to the Binomial Distribution
2.1. The Binomial Experiment

A binomial experiment is an experiment where an independent sample of n
experiments is performed, with each experiment having the same binary 
outcome. A simple example would be 100 tosses of a coin. In this case, the 
experiment is tossing the coin, the sample size n is 100, and the binary outcome 
is whether the coin landed heads up or tails up. In general, assume the values 
of a binary outcome are either success (e.g., heads) or failure (e.g., tails). In the 
binomial experiment, it is assumed that the probability of success, p, is the same 
for each experiment. It is also assumed that the probability of failure is equal 
to 1 − p. For example, when tossing a fair coin, p would be equal to 0.5.
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Natural questions that arise in this experimental setting include: What is the 
probability of observing exactly X successes in n trials? What is the probability 
of observing at least X successes in n trials? The binomial distribution can be 
used to answer these questions.

2.2. The Binomial Distribution

In the binomial distribution, the random variable X is defi ned as the number 
of successes in n trials, where the probability of success for each trial is p.
P(X = x) can be calculated using the formula:

P X x
n

x
p px n x=( ) = ⎛

⎝⎜
⎞
⎠⎟ −( ) −1

where

n

x

n

x n x
⎛
⎝⎜

⎞
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−( )
!

! !
.

The symbol ! stands for factorial, and for any positive whole number a, a!
(spoken as “a factorial”) = a(a − 1)  .  .  .  2 ⋅ 1. For example, 4! = 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24. 
For the special case of 0, 0! = 1. To calculate P(X ≤ x), the above formula can 
be used to calculate the P(X = x) for each value of X that is less than or equal 
to x, and then these probabilities are simply summed. This is written in mathe-
matical notation as:
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x
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=
∑ 1

0
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For any given n and p, the mean of X is np, and the variance of X is np(1 − p).

2.3. The Normal Approximation to the Binomial

When n is small, there are published tables that assist in the calculation of 
probabilities using the above formulas. However, this becomes cumbersome 
and unnecessary when n is large. According to the central limit theorem, for 
large n and when p is not too close to 0 or 1, X approximately follows a normal 
distribution with mean np and variance np(1 − p). In this case, the calculations 
for the binomial distribution can be approximated using the normal distribution 
as follows:

P X x P
X np

np p

x np

np p
P Z z=( ) =

−
−( )

=
−

−( )
⎛
⎝⎜

⎞
⎠⎟

= =( )
1 1

where Z has a standard normal distribution. When is it appropriate to use 
this approximation? A rule of thumb is to use this approximation when both 
np̂ ≥ 5 and n(1 − p̂) ≥ 5 where p̂ = x/n.
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A correction called the continuity correction is usually applied in this setting. 
Because the normal distribution takes on continuous values and the binomial 
distribution only takes on integer values, ±0.5 should be added to the values of 
interest when approximating the integer values of the binomial distribution with 
the continuous values of the normal. That is, we approximate P(X = x) by an 
interval P(x − 0.5 ≤ X ≤ x + 0.5) and then use the normal approximation.

Example 3

Suppose the probability of having an abnormal fasting plasma glucose level is 
0.3. In a sample of size 100, what is the approximate probability that between 20 
and 40 subjects (inclusive) will have abnormal fasting plasma glucose levels?

Let X be the number of subjects with abnormal glucose levels. Note that the 
mean of this binomial is np = 100(0.3) = 30, and the standard deviation is 

np p1 100 0 3 0 7 4 58−( ) = ( )( ) =. . . .

P X P
X

P

20 40
20 0 5 30

4 58
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4 58
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4 58
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.
. 99 2 29≤ ≤( )z .

Based on the standard normal table of probabilities, this probability is 0.9781. 
If we calculate this exactly as:

P X
xx

x
x x20 40
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0 3 1 0 3
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100≤ ≤( ) = ⎛

⎝⎜
⎞
⎠⎟ ( ) −( )

=

=
−∑ . . ,

we get a probability of 0.9786.

3. Estimation and Testing of Single Proportions/Two Proportions
3.1. Estimation of a Single Proportion or the Difference Between 
Two Proportions

The following example will be used to demonstrate estimation of a propor-
tion and differences in two proportions in the single- and two-population set-
tings, respectively.

Example 4

In a prospective cohort study, troponin T levels were obtained for a sample 
of 801 subjects who had been hospitalized with acute myocardial ischemia (3).
Whether or not the subjects died within 30 days was then obtained and is sum-
marized in Table 3. What is an overall estimate of dying within 30 days for 
the subjects with high troponin T levels? What is an estimate of the difference 
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in proportion of death between the subjects with high versus low troponin T 
levels?

In the single population setting, the point estimate of a single proportion 
p is p̂ = x/n and the standard error of p is SE = −( )p p n1 . Thus, a 100 ×
(1 − α)% interval estimate of p is

ˆ ˆ
ˆ ˆ

p z or p z
p p

n
± ±

−( )
α α2 2

1
SE

where za/2 corresponds with the upper a/2 × 100 percentile of the standard 
normal distribution. For Example 4, the point estimate of the proportion of 
subjects with high troponin T levels dying within 30 days is 34/289 = 0.12, and 
the estimate of the standard error is 0 12 0 88 289 0 02. . .( )( ) = . For a 90% inter-
val estimate, the appropriate za/2 is 1.64. Thus, a 90% interval estimate would 
be 0.12 ± 1.64(0.02) or (0.09, 0.15).

For estimating the difference between the proportions from two independent 
populations, p1 and p2, note that the standard error of the difference in two 
independent proportions is

p p

n

p p

n
1 1

1

2 2

2

1 1−( )
+
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so that a 100 × (1 − α)% interval estimate of p1 − p2 is
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For Example 4, the point estimate of the difference in the proportion of subjects 
dying between the patients with high versus low troponin T levels 
is 34/289 − 20/512 = 0.12 − 0.04 = 0.08, and the standard error would be 

0 12 0 88

289

0 08 0 92

512
0 02

. . . .
.

( )( )
+

( )( )
= . Again, if one were interested in a 90%

Table 3
Survival versus Troponin T Levels

Troponin T level

Status >0.1 ng/mL ≤0.1 ng/mL Total

Alive 255 492 747
Dead  34  20  54
Total 289 512 801
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interval estimate of this difference, the estimate would be 0.08 ± 1.64(0.02) or 
(0.05, 0.11).

3.2. Hypothesis Testing with a Single Proportion or the Difference 
Between Two Proportions

The data from Example 2 will be used to demonstrate statistical inferences 
for a proportion and differences in two proportions in the single- and two-
population settings, respectively. For example, among the participants with 
higher levels of triglycerides, is the proportion of those with abnormal glucose 
tolerance tests equal to 0.5? Is there a difference in the proportion of parti-
cipants with abnormal glucose tolerance tests in those with lower and higher 
triglyceride levels?

Suppose you are interested in testing the hypothesis H0 : p = p0 versus the 
alternative hypothesis Ha : p ≠ p0. This test is commonly referred to as the bino-
mial test. For large n, this can be accomplished by calculating a z-statistic and 
comparing this statistic to the standard normal distribution. Note that the z-sta-
tistic is calculated under the assumption that the null hypothesis is true.

z
p p p p

p p

n

p
x

n
=

−
=

−
−( )

=
ˆ ˆ

ˆ .0 0

0 01SE
, where

For testing whether or not among those with high triglyceride levels the propor-
tion with abnormal glucose tolerance tests is equal to 0.5 in Example 2, p̂ =
150/327 = 0.46, p0 = 0.5 and SE = ( )( ) =0 5 0 5 327 0 03. . . . In this case, z = (0.46 
− 0.5)/0.03 = −1.33. Using a level of signifi cance of α = 0.05, the critical value 
for a 2-sided z-test is 1.96. Thus, the conclusion would be that there is no evidence 
that proportion of participants with higher levels of triglycerides with abnormal 
glucose tolerance tests is different than 0.5 at the 0.05 level of signifi cance. 
Alternatively, a P value of 0.1836 could be obtained from a standard normal 
distribution table. The P value is the probability of observing a test statistic as 
or more extreme than the one observed given that the null hypothesis is true. A 
1-sided test could be performed by simply fi nding the appropriate critical value 
for a 1-sided test. For example, if the alternative hypothesis above had been Ha : p
> p0, the appropriate critical value would be 1.64 (or the P value of 0.0918 could 
be calculated). See Chapter 4 for additional discussion of 1-sided tests.

For testing the hypothesis H0 : p1 = p2 (which is equivalent to p1 − p2 = 0) 
versus Ha : p1 ≠ p2, a similar strategy is used. Note that under the null hypothesis, 
p1 = p2 = p, and the best estimate of p (p̂) is obtained by pooling the data from 
two samples.
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For the data in Example 2, p̂ 1 = 364/1222 = 0.30, p̂ 2 = 150/327 = 0.46 and

p̂ = (364 + 150)/(1222 + 327) = 0.33. Thus, SE = ( ) +( ) =0 33 0 67
1

1222

1

327
0 03. . .

and z = (0.30 − 0.46)/0.03 = −5.33. Again, using a level of signifi cance of α =
0.05, the critical value for a 2-sided z-test would be 1.96, and the null hypothesis 
would be rejected. The conclusion would be that the proportion of participants 
with abnormal glucose tolerance tests are different for those with triglyceride 
levels lower than 150 mg/dL compared with those with triglyceride levels 
greater than or equal to 150 mg/dL at the 0.05 level of signifi cance. Again, P
values could also be obtained if desired, and 1-sided tests can be performed by 
using the appropriate critical value.

3.3. Assumptions

In order for the normal approximation to hold for the formulas in this section, 
n must be large enough, and p and 1 − p must be far enough away from zero. 
How is this determined? A simple rule of thumb is that np̂  and n(1 − p̂) (in the 
one-population setting) or np̂1, n(1 − p̂1), np̂2 and n(1 − p̂2) (in the two-popula-
tion setting) should all be greater than 5.

4. Tests of Association
Often, we are interested in whether 2 variables are associated with each 

other. For example, is the presence or absence of a particular disease associated 
with a particular gene? Is recurrence of a tumor associated with receiving a 
certain type of chemotherapy? In the following subsections, the null hypothesis 
(H0) is that there is no association between the 2 variables and the alternative 
hypothesis (Ha) is that there is an association between the 2 variables. We will 
discuss this in various settings.

4.1. Two-by-Two Tables

Consider again the Beckwith-Wiedemann syndrome data from Example 1.
An intuitive approach to testing the null hypothesis in this setting would be to 
compare the observed counts in the 2×2 table (Oij) to what we would expect 
these counts to be if the null hypothesis is true (Eij). For multinomial distributed 
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counts, when there is no association between the 2 variables (i.e., the rows and 
the columns are independent), the probability of being in the ith row and jth
column, pij, is simply equal to the probability of being in the ith row times the 
probability of being in the jth column (pi × pj), so that the Eij = npipj and Êij =
n(Ri/n)(Cj/n) = RiCj/n where Ri is the row total for the ith row and Cj is the 
column total for the jth column. For independent multinomial sampling, although 
the derivation is different, it is still the case that Êij = RiCj/n. For example, in 
Example 1 the expected count when Beckwith-Wiedemann syndrome is absent
and the variant is type 1 would be (129)(236)/382 = 79.70.

The following statistic:
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E
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n
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ˆ
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called Pearson’s chi-square test statistic, has a chi-square distribution with 1 
degree of freedom when the null hypothesis is true. Large differences between 
the observed and expected counts would indicate that the assumption of no 
association between the 2 variables is wrong, so the null hypothesis would be 
rejected for large values of the test statistic. This test is commonly called a 
chi-square test of association.

In Example 1, the calculation of the Pearson chi-square test statistic 
would be

X 2
2 2 279 79 70

79 70

157 156 30

156 30

50 49 30

49 30

9
=

−( )
+

−( )
+

−( )
+

.

.

.

.

.

.

66 96 70

96 70
0 024

2−( )
=

.

.
. .

For a single degree of freedom, the 95th percentile for the chi-square distribu-
tion is 3.84. Thus, the null hypothesis would not be rejected in this case. The 
conclusion would be that there is no association between the type of variant 
and Beckwith-Wiedemann syndrome at the 0.05 level of signifi cance. Note 
that the P value in this case is 0.8768 (which is easiest to fi nd using statistical 
software).

4.2. R¥C Tables

Pearson’s chi-square test statistic is also used for a general R×C table. In this 
case, the degrees of freedom are (R − 1)(C − 1). Consider the following 
example.

Example 5

In a retrospective chart review of 124 patients with recurrent laryngeal squa-
mous cell carcinoma (4), the number of subjects surviving at 2 years was 
cross-classifi ed by the stage of their disease (classifi ed using the Tumor, Node, 
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Metastasis [TNM] system) at the time of initial treatment (or decision not to 
treat). Within each cell of Table 4, the observed and expected counts are given, 
with the expected counts in parentheses. For these data, to test the null hypoth-
esis that there is no association between death and disease stage, the test statistic 
would be

X 2
2 2 223 14 11

14 11

12 20 89

20 89

4 12 10

12 10

2
=
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+ +
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.

.

.

.
. . .

.

.
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17 90
19 73

2−( )
=

.

.
. .

The degrees of freedom would be (2 − 1)(4 − 1) = 3. The 95th percentile of a 
chi-square distribution with 3 degrees of freedom is 7.81, so the null hypothesis 
would be rejected. Again, using statistical software, the P value is calculated 
as 0.0002. The conclusion would be that there is an association between death 
within 2 years of recurrence of laryngeal squamous cell carcinoma and disease 
stage at the 0.05 level of signifi cance.

4.3. Relationship Between Tests of Independence and Homogeneity

Note that chi-square tests of association are also commonly called chi-square
tests of independence. When they are conducted from samples drawn from 
independent multinomial populations, they are also referred to as tests of homo-
geneity because the tests essentially assess whether the multinomial distribu-
tions are homogenous across the independent samples. However, Equation 2
and its associated degrees of freedom are identical regardless of whether one 
is testing independence or homogeneity.

Table 4
Survival Status by Tumor Stage at Diagnosis

Tumor, Node, Survival status
Metastasis
stage Survived Died Total

Stage I 23 (14.11) 12 (20.89)  35
Stage II 13 (11.29) 15 (16.71)  28
Stage III 10 (12.50) 21 (18.50)  31
Stage IV  4 (12.10) 26 (17.90)  30
Total 50 74 124

Terms in parentheses are the expected counts.
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4.4. Fisher’s Exact Test

Using Pearson’s chi-square test statistic to test association requires that the 
sample sizes be large enough so that the test statistics do indeed follow a chi-
square distribution. How large is large enough? A rule of thumb is that all cells 
must have expected counts greater than 5. When the expected counts are smaller 
than this, an alternative approach is to use Fisher’s exact test.

First consider the 2×2 table. If the 2 variables are indeed independent (i.e., 
the null hypothesis is true), and we assume both the row and column totals were 
prespecifi ed, the resulting cell counts follow what is called a hypergeometric 
distribution. The idea underlying Fisher’s exact test is to generate all 2×2 tables 
that have the same row and column totals as the observed table. Each of these 
tables has a probability of occurring (which can be calculated using the hyper-
geometric distribution formula):

P table
R R C C

n n n n n
( ) = 1 2 1 2

11 12 21 22

! ! ! !

! ! ! ! !
.

Any table with a probability less than or equal to the table of observed data 
would support the alternative hypothesis, so the sum of the probabilities of all 
of these tables would represent the probability of observing a table as or more 
supportive of the alternative hypothesis as the observed table under the assump-
tion that the null hypothesis is true. This is, in fact, the defi nition of a P value 
for testing the null hypothesis of no association.

Example 6

As part of a larger cross-sectional study (5), researchers assessed whether 
the alteration of a particular gene (p53) was associated with elevated expres-
sions of another gene (p73). They collected data on 17 samples as presented in 
Table 5. The probability of observing this table under the null hypothesis of

Table 5
Alteration of p53 and Expression of p73

 Elevated
 expression
 of p73

Alteration of p53 Yes No Total

Yes 11 3 14
No  0 3  3
Total 11 6 17



Statistical Inference on Categorical Variables 85

no association is 
14 3 11 6

17 11 3 0 3
0 0294

! ! ! !

! ! ! ! !
.= . There are 3 other tables with the same

row and column totals as the observed table, all of which have higher probabili-
ties under the null hypothesis. The tables (only cell counts are shown for

brevity) and their respective probabilities of occurrence are P
10 4

1 2
0 2426⎛

⎝⎜
⎞
⎠⎟ = . ;
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9 5

2 1
0 4853⎛

⎝⎜
⎞
⎠⎟ = . ; and P

8 6

3 0
0 2426⎛

⎝⎜
⎞
⎠⎟ = . . Thus, the P value for testing no

association in this data is equal to the probability for the observed table (P value 
= 0.0294). Note that even this simple example requires a fair amount of com-
putation and would usually be performed with a statistical software package. 
Fisher’s exact test can also be applied to R×C tables, although the computa-
tional effort involved greatly increases. As computers have become faster, this 
is less of an issue. In fact, larger tables can be routinely analyzed using current 
computers.

5. McNemar’s Test
Occasionally, there is interest in comparing 2 proportions, but the propor-

tions are not independent. Consider the following example:

Example 7

Researchers wanted to compare the usefulness of a new polymerase chain 
reaction (PCR) assay versus the culture method in the diagnosis of a particular 
bacterial infection. They obtained the data presented in Table 6 from tissue 
specimens taken from 300 mice infected with the bacterium with regard to the 
presence (+) or absence (−) of the infection. The researchers wanted to know 
if the proportion of specimens identifi ed as positive by PCR (113/300 = 0.377) 

Table 6
PCR and Culture Methods of Diagnosis of Bacterial 
Infection

 PCR

Culture + − Total

+  66   7  73
− 47 180 227
Total 113 187 300
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was signifi cantly different than the proportion of specimens identifi ed as posi-
tive by conventional methods (73/300 = 0.243). The method described in 
Section 3.2 is not appropriate here because the 2 proportions are measured on 
the same sample and not 2 independent samples.

A statistical test that would be appropriate in this situation is McNemar’s
test. Note that in Example 7, if the number of specimens testing positive using 
the culture method and negative using the PCR method (n12) were equal to the 
number of specimens testing negative using the culture method and positive 
using the PCR method (n21), the 2 proportions of interest would be equal regard-
less of how many specimens tested positive using both methods or negative 
using both methods. Intuitively, the test statistic used to test equality should 
focus on the difference between these 2 numbers. The formula is in fact:

M
n n

n n
=

−( )
+

12 21
2

12 21

,

which follows a chi-square distribution with 1 degree of freedom when the 2 
proportions are equal. In Example 7, M = (7 − 47)2/(7 + 47) = 29.63, and the 
critical value for a chi-square test with 1 degree of freedom and α = 0.05 level 
of signifi cance is 3.84. Thus, McNemar’s test would indicate that the propor-
tions are not equal. Note that for small samples sizes (n12 + n21 ≤ 25), a continu-
ity correction similar to the continuity correction described in Section 2.3 is 
used.

6. Sample Size Estimation
Determining the appropriate sample size is a critical step in the development 

of any research protocol. Using too few subjects can result in the statistical tests 
having no ability (power) to show a statistically signifi cant difference for the 
question of interest, and using too many subjects can be costly, both in terms 
of time and money. Formulas for sample size estimation for categorical vari-
ables, as in other settings, are based on the null and alter native hypothesis, 
the statistical test, α, β, and the difference you wish to detect. For example, 
the sample size needed per group to test the hypothesis that H0 : p1 = p2 versus 
Ha : p1 ≠ p2 using the statistical test presented in Section 3.2 is

n z p p z p p p p p p= −( ) + −( ) + −( )⎡⎣ ⎤⎦ −( )α β2 1 1 11 1 2 2

2

1 2
2

where p̄ is the average of p1 and p2. For example, suppose a researcher wished 
to design a study that could detect a difference between the proportion of indi-
viduals with high triglycerides of 0.3 in a sample of individuals with normal 
GTT and of 0.4 in a sample of individuals with abnormal GTT with 1 − β =
0.8 (80% power) at a level of signifi cance of α = 0.05. In this case, p1 = 0.3, 
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p2 = 0.4, p̄ = 0.35, zα = 1.96, and zb = 0.8416. Using the formula above, a sample 
size of n = 356 per GTT group would be required. Further discussion of sample 
size estimation in the categorical as well as in other settings can be found in 
Chapter 19.

7. Discussion
Aside from Fisher’s exact test, there are a few other exact methods that are 

relevant to the settings in this chapter. For example, exact confi dence intervals 
for both the single proportion and difference in 2 proportions are available, as 
is an exact test for a single proportion (the binomial test) and McNemar’s test.

Note that in the equation for the Pearson chi-square statistic, the rows and 
columns in a table could be reordered without changing the value of the test 
statistic. In other words, any natural ordering of the levels of the variables if it 
exists is not taken into account and the variables are treated as if they were 
nominal. This may lead to a loss of information when either the rows or 
columns or both are ordinal. There is a more general class of statistical tests 
called Cochran-Mantel-Haenszel tests (or extended Mantel-Haenszel tests) that 
can more optimally utilize the ordinality of the data when either or both of the 
row and column variables are ordinally scaled and can also be used when one 
wants a single test of association between 2 variables and has collected the data 
on several samples (as is often the case in a multisite clinical trial) (6).

Finally, the careful reader will notice the similarity between the test of two 
independent proportions in Section 3.2 and the chi-square test for association 
in the 2×2 table in Section 4.1. In fact, it can be shown algebraically that the 
square of the z-statistic in Section 3.2 is identical to the chi-square statistic in 
Section 4.1. Thus, whether you conduct the test in Section 3.2 or display the 
data as a 2×2 table and conduct the test in Section 4.1, both tests will produce 
the same P value. This is relevant particularly when using computer software 
because the chi-square test for association is commonly available in statistical 
software, but the z-test for 2 independent proportions is not.
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Development and Evaluation of Classifi ers

Todd A. Alonzo and Margaret Sullivan Pepe

Summary
Diagnostic tests, medical tests, screening tests, biomarkers, and prediction rules are all types 

of classifi ers. This chapter introduces methods for classifi er development and evaluation. We fi rst 
introduce measures of classifi cation performance including sensitivity, specifi city, and receiver 
operating characteristic (ROC) curves. We then review some issues in the design of studies to 
assess and compare the performance of classifi ers. Approaches for using the data to estimate and 
compare classifi er accuracy are then introduced. Next, methods for combining multiple classifi ers 
into a single classifi er are presented. Lastly, we discuss other important aspects of classifi er 
development and evaluation. The methods presented are illustrated with real data.

Key Words: Accuracy; predictive value; receiver operating characteristic (ROC) curve; 
sensitivity; specifi city; study design.

1. Introduction
Recent technologic and scientifi c advances have led to an explosion in the 

number of new screening tests, diagnostic tests, and biomarkers that are being 
developed for the early detection and diagnosis of medical conditions. Often, 
the earlier a medical condition can be detected or diagnosed, the better the 
outcome. Diagnostic tests, screening tests, and biomarkers are all types of clas-
sifi ers that differ in the context in which they are applied. Classifi ers can be 
used in other contexts also, including prognosis and predicting response to 
treatment.

Diagnostic tests are used to diagnose a particular medical condition. Exam-
ples of diagnostic tests include ultrasound and computed tomography for detec-
tion of appendicitis, optical immunoassay tests for detection of infl uenza, and 
bacterial culture for the detection of infectious diseases. Screening for disease 
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is differentiated from diagnosis in that screening often occurs in nonsympto-
matic populations, whereas diagnosis typically takes place in symptomatic 
populations. Examples of screening tests include prostate specifi c antigen 
(PSA) for prostate cancer, mammography for breast cancer, Papanicolaou 
(PAP) for cervical cancer, fecal occult-blood test for colorectal cancer, and 
serum cholesterol and blood pressure for cardiovascular disease. Prognosis can 
be considered a special type of diagnosis where the condition to be detected is 
a clinical outcome of interest. For example, the Framingham risk score uses the 
age, gender, total cholesterol, high-density lipoprotein (HDL) cholesterol, 
systolic blood pressure, and tobacco use of an individual to estimate the 10-year 
risk of a heart attack and coronary death.

Classifi ers may have binary, ordinal, or continuous results. Examples of 
tests with binary results include home pregnancy tests and bacterial cultures, 
which are either positive or negative. A radiologist’s interpretations of 
images to quantify the suspicion of cancer are usually based on the follow-
ing 5-point ordinal scale: 1 = normal, 2 = benign, 3 = probably benign, 
4 = suspicious for cancer, and 5 = highly suspicious for cancer. Examples 
of continuous tests include tumor-marker concentrations such as PSA for detect-
ing prostate cancer and otoacoustic emissions tests for detecting hearing 
impairment.

To help make the ideas more concrete, screening and diagnostic tests 
are primarily used to illustrate the concepts throughout the chapter. However, 
the material presented applies more generally to any classifi cation task. 
Disease status (D) as determined by a gold standard is assumed to be 
measured without error (D = 1 indicates disease and D = 0 indicates no disease). 
Section 6.2 describes the impact of errors in measuring disease status on 
evaluating the performance of classifi ers. Let Y be the test result. Without 
loss of generality, it is presumed that larger values of Y are more indicative of 
disease.

Before classifi ers are applied in practice, it is imperative that the performance 
of the classifi ers be evaluated. In Section 2, we defi ne and motivate measures 
of classifi cation performance. Study design issues to answer relevant questions, 
to avoid bias, and to ensure effi cient use of resources are discussed in Section
3. For a detailed discussion on sample size calculations, see Chapter 8 of Pepe 
(1) for classifi ers in particular and Chapter 19 of this text for a general treat-
ment of sample size considerations. Approaches for using the data to estimate 
and compare test accuracy are provided in Section 4. In settings where the 
accuracy of a single test is not satisfactory, combining the results of multiple 
tests is often considered with the hope of the combined test having better per-
formance (Section 5). Other important aspects of classifi er development and 
evaluation are presented in Section 6.
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2. Measures of Classifi cation Accuracy
The diagnostic accuracy of a test is the test’s ability to discriminate among 

alternative states of health; for example, cancer versus cancer-free or more 
generally diseased versus not diseased. In this section, we defi ne several meas-
ures of accuracy.

2.1. True- and False-Positive Fractions

Consider binary tests that are either positive for disease (Y = 1) or negative 
for disease (Y = 0). The accuracy of these tests is often summarized with the 
true-positive fraction (TPF) and the false-positive fraction (FPF). The TPF is 
the proportion of diseased subjects detected by the screening test. That is, TPF 
is the conditional probability that a diseased subject screens positive, P(Y = 1|D
= 1). On the other hand, the FPF is the proportion of nondiseased subjects 
erroneously deemed positive by the screening test, P(Y = 1|D = 0). TPF is also 
referred to as the sensitivity and FPF is equal to 1 − specifi city. The TPF quanti-
fi es the key benefi t of screening, (i.e., disease detection), whereas the FPF 
quantifi es a key disadvantage of screening because subjects that have false-
positive results are sent for workup procedures or treatments that are often 
costly in both human and monetary aspects. Therefore, when comparing tests, 
it is important to consider how tests compare in regard to both TPF and FPF. 
A perfect test has TPF = 1 and FPF = 0. Conversely, a noninformative test 
(i.e., no better than fl ipping a coin) is such that TPF = FPF.

Example 1

A study was conducted to determine the ability of ultrasound (US) to diag-
nose childhood appendicitis (2). Table 1 summarizes the results of US for 283 
children compared with their true appendicitis status. Histopath ology and 
follow-up questionnaire were the gold standard used to determine the true 
appendicitis status for the children. Note that US is a binary test that is posi-
tive for appendicitis (US = 1) or negative for appendicitis (US = 0). Table 1

Table 1
Results of Ultrasound and Appendicitis Status

 Appendicits

D = 1 D = 0

US = 1  94  9 103
US = 0  15 165 180
 109 174 283
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indicates that 109 of the children were determined to have appendicitis by the 
gold standard. Of these 109 children, 94 tested positive with US. Therefore, the 
TPF for US is 94/109 = 0.862. Of the 174 children determined to not have ap -
pendicitis, 9 falsely had positive US results. Thus, the FPF for US is 9/174 =
0.0517, or equivalently the specifi city is 1 − 0.0517 = 0.9483.

2.2. Predictive Values

The true- and false-positive fractions quantify how well the test refl ects true 
disease status. Clinicians and patients may be more interested in the predictive 
value of a test (i.e., the probability a subject has the disease given the results 
of a test) rather than the TPF and FPF. Positive predictive value (PPV) is the 
probability of disease in those with a positive test result, P(D = 1|Y = 1). Nega-
tive predictive value (NPV) is the probability of not having the disease when 
the test result is negative, P(D = 0|Y = 0). A perfect test has PPV and NPV both 
equal to 1. Conversely, a noninformative test has PPV equal to the population 
prevalence of disease and NPV equal to one minus the prevalence of disease.

Example 1 (Continued)

Of the 103 children who tested positive with US, 94 had appendicitis 
(Table 1). Therefore, the PPV is 94/103 = 0.91. Similarly, of the 180 children 
who tested negative with US, 165 did not have appendicitis. Thus, NPV is 
165/180 = 0.92.

Predictive values depend not only on the TPF and FPF of the test but also 
on the prevalence of disease in the population in which the test is performed. 
Specifi cally,

PPV
TPF prevalence

TPF prevalence FPF prevalence
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NPV
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× + × −

=
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Note that this is just Bayes’ rule (see Chapter 16 for more on this). It is evident 
from the fi rst expression that settings with low disease prevalence can yield 
low PPV even for tests with good TPF and FPF. The second expression sug-
gests that settings with high disease prevalence can yield low NPV for tests 
with good TPF and FPF.

2.3. Diagnostic Likelihood Ratios

Diagnostic likelihood ratios (DLRs) are another way to quantify the perform-
ance of a binary test. The positive DLR (DLR+) is defi ned as the probability of 
a positive test result in diseased subjects divided by the probability of a positive 
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test result in nondiseased subjects. Similarly, the negative DLR (DLR−) is 
defi ned as the probability of a negative test result in diseased subjects divided 
by the probability of a negative test result in nondiseased subjects. That is,
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Example 1 (Continued)

In Section 2.1, it was estimated that the TPF and FPF of US were 0.862 and 
0.0517, respectively. Inserting these estimates into the above equations yields 
that DLR+ is 0.862/0.0517 = 16.7 and DLR− is (1 − 0.862)/(1 − 0.0517) = 0.15. 
The DLR+ estimate indicates that for every 16.7 children with appendicitis 
correctly classifi ed, one child without appendicitis is incorrectly classifi ed. 
Similarly, the estimate of DLR− indicates that for every 1/0.15 = 6.7 children 
without appendicitis correctly classifi ed, one child with appendicitis is incor-
rectly classifi ed.

Before a diagnostic test is performed, the odds of disease is P(D = 1)/P(D
= 0), where P(D = 1) is the prevalence of disease in the population. This is also 
referred to as the pretest odds. The odds of disease after the test is performed 
(i.e., posttest odds) is P(D = 1|Y)/P(D = 0|Y). DLRs relate the pretest and post-
test odds as follows:

posttest odds with positive test result = DLR+ × pretest odds

posttest odds with negative test result = DLR− × pretest odds.

Therefore, the DLRs quantify the change in the odds of disease obtained by 
knowledge of the result of the diagnostic test. A perfect test has DLR+ and
DLR− of ∞ and 0, respectively. Conversely, a noninformative test has DLR+

and DLR− both equal to 1.

Example 1 (Continued)

The prevalence of appendicitis in this example is 109/283 = 0.39. Therefore, 
the pretest odds of appendicitis is 0.39/(1 − 0.39) = 0.63. Inserting the estimate 
of pretest odds as well as DLR+ = 16.7 and DLR− = 0.15 (calculated above) 
into the equations above, we obtain that the pretest odds of appendicitis are 
increased to 16.7 × 0.63 = 10.5 by a positive US. Conversely, the pretest odds 
are decreased to 0.15 × 0.63 = 0.09 by a negative US.



94 Alonzo and Pepe

2.4. ROC Curves

Receiver operating characteristic (ROC) curves are a well-accepted measure 
of accuracy for tests with continuous or ordinal results. Our presentation here 
focuses on continuous tests. ROC curves display the trade-offs between the 
TPF and FPF of the test as the defi nition of a positive result is varied. By choos-
ing a cutpoint c on the continuous scale, a binary test may be defi ned such that 
a test result with Y ≥ c is considered positive and if Y < c, the test is considered 
negative. An ROC curve is a plot of the TPF versus FPF associated with such 
binary tests as the cutpoint c is varied from −∞ to +∞. That is, an ROC curve 
is a plot of TPF(c) versus FPF(c) for all c, where

TPF(c) = P(Y ≥ c|D = 1) and

 FPF(c) = P(Y ≥ c|D = 0).

ROC curves measure the amount of separation between the distribution of 
test results in the diseased population from the distribution of test results in the 
nondiseased population (Fig. 1). When the distributions of test results for the 
diseased and nondiseased populations completely overlap, then the ROC curve 
is the 45-degree line from (0, 0) to (1, 1), with FPF(c) = TPF(c) for all c indi-
cating a noninformative test. The more separated the distributions, the closer 
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Fig. 1. Left panels: Distributions of test results for diseased population (solid curve) 
and nondiseased populations (broken curve). Right panels: Corresponding ROC curves 
(solid curve). Broken line corresponds with a noninformative test.
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the ROC curve is to the upper left-hand corner. A curve that reaches the upper 
left corner, with FPF(c) = 0 and TPF(c) = 1 for some c, corresponds with a 
perfect test. A key feature of ROC curves is that they can be used to visually 
compare the accuracy of different tests even when tests are measured either in 
different units or on completely different scales.

A standard way to summarize the accuracy of a continuous test is to calculate 
the area under the ROC curve (AUC). This is equal to 1 for a perfect test and 
is equal to 0.5 for an uninformative test. Interestingly, the AUC corresponds 
with the probability that the test result for a randomly chosen diseased subject 
exceeds that for a randomly chosen nondiseased subject. That is, AUC is P(Y1

> Y2|D1 = 1, D2 = 0), where the subscripts 1 and 2 correspond with a diseased 
and nondiseased subject, respectively. AUC can also be interpreted as the 
average TPF over the whole range of possible FPF. Restricting attention to a 
certain region of the ROC curve may be appropriate in certain settings. For 
screening tests applied to apparently healthy populations, one may only be 
interested in thresholds that yield low FPF, say. Restricting attention to the 
ROC curve where FPF is adequately low and calculating the area under that 
region yields a summary known as the partial AUC (pAUC).

2.5. Selecting a Measure of Accuracy

The measure of accuracy appropriate for a particular study will depend on 
the objective of the study. The study objectives can be used to categorize a 
study in one of fi ve phases for the development of a medical test (3) (Table 2).
The fi rst phase (phase 1) consists of exploratory investigations to identify 
promising tests and determine how best to use tests. Typically, phase 1 studies 
employ a case-control design (see Section 3.1) where conveniently available 
cases (diseased subjects) and controls (nondiseased subjects) are used. Phase 2 
rigorously estimates the accuracy (TPF and FPF) of the test using a case-control 
design where the cases and controls are carefully selected from the population 
of interest. Phase 3 studies involve defi ning screen positivity, determining 
factors that affect test accuracy, comparing promising tests, and developing 
algorithms for combining tests. They are usually large population-based case-
control studies. Prospective application of tests using a cohort study is referred 
to as phase 4. These studies determine predictive values as well as TPF and 
FPF when the tests are applied in practice. Phase 5 usually involves randomized 
prospective trials that compare a new test with the standard of practice. These 
studies evaluate the costs and benefi ts and take treatment effects into account. 
Often, the primary outcomes of interest in phase 5 are mortality and long-term 
morbidities associated with the disease in the presence and in the absence of 
the testing program.
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3. Basics of Study Design
Many of the well-accepted principles for the design of therapeutic studies 

discussed in Chapter 1 also apply to the design of studies to compare the 
accuracies of tests. The Standards for Reporting of Diagnostic Accuracy 
(STARD) group provided a checklist for reporting results of studies of diag-
nostic accuracy and hence a list of aspects of design and analysis that should 
be considered in planning a study (4,5). In this section, we review some basic 
issues in the design of comparative accuracy studies.

3.1. Case-Control versus Cohort Designs

Studies to compare the accuracy of tests can be performed prospectively or 
retrospectively. Retrospective studies involve selecting subjects on the basis of 
their true disease status as determined by the gold standard and performing the 
tests on them. These retrospective studies are often called case-control studies, 
where cases are those with disease and controls are those without disease. Pro-

Table 2
Phases of Research for the Development of a Medical Test

Phase Description Typical objectives Typical design

1 Exploratory Identify promising tests and Case-control study with
 investigations settings for application convenience sampling

2 Retrospective Rigorously estimate accuracy Population-based
 validation (TPF and FPF) case-control sampling

3 Retrospective Defi ne screen positivity. Large-scale
 refi nement Determine factors that affect population-based
  test accuracy. Compare case-control study
  promising tests. Develop
  algorithms for combining tests

4 Prospective Determine predictive values, Cohort study
 application TPF, and FPF when test is
  applied in practice

5 Disease impact Determine effects of testing on Randomized
  cost and mortality associated prospective trial
  with disease comparing new test
  with standard of
   practice
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spective studies involve applying the tests to a random sample from the popula-
tion of interest and determining true disease status for all study subjects. True 
disease status can be determined concurrently for a cross-sectional cohort study 
or over a follow-up period for a truly prospective cohort study.

The main advantage of a case-control study is that the overall study size is 
generally much smaller than it is for a cohort study. The case-control design, 
however, has the following disadvantages: (i) the spectrum of cases might not 
be representative of those in the population because the cases were identifi ed in 
the absence of the screening tests under study. This is known as spectrum bias 
(Table 3); (ii) because PPV and NPV depend on disease prevalence in the popu-
lation and this cannot be estimated from the data, neither can predictive values; 
(iii) the impact of screening on mortality and morbidity and on costs associated 
with screening cannot be assessed. It is for these reasons that case-control studies 
in phases 1, 2, and 3 often precede the conduct of a cohort screening study in 
phase 4, the latter being more defi nitive but also more costly.

Table 3
Common Sources of Bias

Type of bias Description

Verifi cation bias Nonrandom selection for defi nitive assessment of disease
 with the gold standard reference test

Errors in the reference True disease status is subject to misclassifi cation because
 the gold standard is imperfect

Spectrum bias Types of cases and controls included are not representative
 of the population

Test interpretation bias Information is available that can distort the diagnostic test
result

Unsatisfactory tests Tests that are uninterpretable or incomplete do not yield a
test result

Extrapolation bias The conditions or characteristics of populations in the study
 are different from those in which the test will be applied

Lead time biasa Earlier detection by screening may erroneously appear to
indicate benefi cial effects on the outcome of a
progressive disease

Length biasa Slowly progressing disease is overrepresented in screened
 subjects relative to all cases of disease that arise in the

population
Overdiagnosis biasa Subclinical disease may regress and never become a clinical

 problem in the absence of screening, but is detected by
screening

aApplies only to screening for preclinical states of a progressive disease.
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3.2. Paired versus Unpaired Designs

Studies designed to compare multiple screening tests can have a paired
design, where all tests are performed on each individual. Alternatively, an 
unpaired design can be employed, where each individual is allocated (ideally 
randomly) to one of the tests. Pairing is often desirable because it can reduce 
variability in making comparisons among tests by eliminating between-subject 
variance. Therefore, pairing is usually a more effi cient design requiring smaller 
sample sizes. However, if the adminstration of one test interferes with the 
results of another test, an unpaired design may be necessary.

3.3. Blinding

Blinding is just as important in the context of screening test studies as it is 
in therapeutic studies. In particular, the screening tests and gold standard tests 
should be performed without knowledge or interference of other test results. 
Furthermore, in cohort studies the determination of true disease status with the 
gold standard test should be performed without knowledge of the screening test 
results. On the other hand, in case-control studies, the determination of the 
screening test results should be obtained in the absence of knowledge of true 
disease status so the performance of the screening test in the study will more 
closely refl ect its performance when applied in practice.

3.4. Avoiding Bias

It is important that studies of diagnostic tests are carefully designed and 
analyzed to avoid bias. Table 3 describes biases that are frequently encountered 
in diagnostic test studies. (See Chapter 1 of Pepe (1) for a discussion of each 
bias.)

3.5. Factors Affecting Test Performance

There are many factors that can affect the performance of a test. Such factors 
could include demographic attributes of the subjects tested (e.g., age, gender, 
race), characteristics or severity of their disease (e.g., histology and stage in 
cancer), characteristics of controls (e.g., benign disease or nondiseased), char-
acteristics of testers (e.g., experience, institution), and conditions under which 
the tests are performed. It is important to identify and understand the infl uence 
of these factors because: (i) populations and settings where a test is more or 
less accurate can be identifi ed, which can be useful in determining how best to 
use a test (this can be accomplished using regression analysis, which is dis-
cussed briefl y in Section 6.3); (ii) study results may not be relevant to popula-
tions with different conditions or characteristics. This is referred to as 
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extrapolation bias (Table 3). In unpaired designs where subjects receive only 
one of the screening tests, subjects should be randomized to the test that they 
receive, and care should be taken to balance the randomization in regard to 
factors that might infl uence the performance of each test.

4. Estimating Performance from Data
4.1. Single Binary Test

Consider a cohort study with n study subjects who receive a binary test. 
Using the notation in Table 4, the performance of the test can be estimated as 
follows:
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where the hat symbol (ˆ) denotes an estimate of the quantity.
The estimators of TPF, FPF, and predictive values are proportions, so con-

fi dence intervals can be constructed using standard approaches appropriate for 
binomial proportions. When the parameters are near 0 or 1, normal approxima-
tion confi dence intervals may extend beyond 0 and 1. In these settings, logistic 
transformed confi dence intervals may be preferred.

Confi dence intervals for log DLR+ and log DLR− can be constructed using 
the following variance expressions:
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The estimators of TPF, FPF, DLR+, and DLR− given above can also be 
applied to data from a case-control study. The above estimators of predictive 
values are not appropriate for a case-control study. However, the formulas in 
Section 2.2 can be used to estimate the predictive values if population preva-
lence is known or can be estimated.

Example 1 (Continued)

Using the ultrasound data in Table 1, we obtain the following estimates and 
corresponding 95% logistic confi dence intervals: TP̂F = 0.86 (0.78, 0.92), FP̂F
= 0.05 (0.03, 0.10), PP̂V = 0.91 (0.84, 0.95), and NP̂V = 0.92 (0.87, 0.95). 
Furthermore, DLR+ is estimated to be 16.7 (log DL̂R+ = 2.81), and DLR− is 
estimated to be 0.15 (log DL̂R+ = −1.93). Note that these estimates of accuracy 
are identical to those obtained in Section 2. The 95% confi dence intervals for 
log DLR+ and log DLR− are (2.17, 3.45) and (−2.40, −1.46), respectively. Taking 
the exponential function of the confi dence limits yields confi dence intervals of 
(8.8, 31.6) for DLR+ and (0.09, 0.23) for DLR−.

Because it is important to consider both TPF and FPF when assessing the 
performance of a test, joint confi dence regions rather than univariate confi dence 
intervals should be used. A joint (1 − a) confi dence region can be formed by 
the rectangle (TPFL, TPFU) × (FPFL, FPFU), where (TPFL, TPFU) and (FPFL,
FPFU) are (1 − a*) level confi dence intervals for TPF and FPF, respectively, 
and 1 − a* = (1 − a)½.

Example 1 (Continued)

To calculate a joint 95% confi dence region for TPF and FPF, we fi rst 
note that a = 5%. Therefore, 1 − a* = (1 − 0.05)½ = 0.975. So we calculate 
97.5% confi dence intervals for TPF and FPF of ultrasound. These are 
(0.77, 0.92) and (0.02, 0.10), respectively. These results indicate that with 
95% confi dence the TPF is between 0.77 and 0.92 and the FPF is between 0.02 
and 0.10.

4.2. Comparison of TPF and FPF for Two Binary Tests

We next consider comparing TPFs and FPFs for two binary screening tests 
(test A and test B). Subscripts are added to the parameters to indicate the test. 
There are different metrics that can be used for comparisons. Consider, 
for example, the TPFs of two tests: one can calculate the absolute difference

TPFA− TPFB, the odds ratio TPF TPR

TPF TPF
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B A
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, or the ratio TPFA/TPFB. The ratio

has a straightforward interpretation and also has advantages in that statistical 
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inference on the relative scale is less diffi cult than inference on the absolute 
scale, and the interpretation on the relative scale is less awkward than that for 
odds ratios (1). For these reasons, the relative true-positive fraction rTPF(A, B) 
= TPFA/TPFB and relative false-positive fraction rFPF(A, B) = FPFA/FPFB are 
considered in this chapter (where the lowercase r denotes ratio).

By noting that the null hypothesis H0 : TPFA = TPFB is equivalent to 
H0 : rTPF(A, B) = 1, we focus on constructing confi dence intervals for rTPF 
and rFPF. It can then be concluded that tests have different classifi cation prob-
abilities if the confi dence intervals do not contain the value 1.

4.2.1. Unpaired Design

Using data collected from an unpaired design where n(A) subjects receive 
test A and n(B) subjects receive test B (Table 5), rTPF and rFPF can be esti-
mated as the ratios of the estimated true- and false-positive fractions
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To construct confi dence intervals, we fi rst do so for the log rTPF and log rFPF: 
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Table 5
Data from an Unpaired Study

D = 1 D = 0

Y = 1 Y = 0  Y = 1 Y = 0

Test A n+
D(A) n−

D(A) nD(A) n+
D̄(A) n−

D̄(A) nD̄(A)
Test B n+

D(B) n−
D(B) nD(B) n+

D̄(B) n−
D̄(B) nD̄(B)
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Taking the exponential of the confi dence limits yields confi dence intervals for 
rTPF and rFPF.

Example 1 (Continued)

We have already assessed the ability of US to detect pediatric appendicitis. 
The aim of this study was to compare the abilities of US alone and computed 
tomography (CT) performed in addition to US to diagnose childhood appendi-
citis (2). The study was a randomized prospective cohort study where 600 
children with suspected appendicitis were randomized to receive US alone or 
US with abdominal CT (US + CT). Table 6 summarizes the results of US and 
US + CT compared with the true appendicitis status. Using these data, we esti-
mate that TPF(US + CT) = 133/135 = 0.985 and TPF(US) = 94/109 = 0.862 so 
rTPF(US + CT, US) = 0.985/0.862 = 1.14. Similarly, we estimate that FPF(US 
+ CT) = 20/182 = 0.110 and FPF(US) = 9/174 = 0.052 so rFPF(US + CT, US) 
= 0.110/0.052 = 2.12. Thus, the combination of US and CT appears to detect 
14% more cases of appendicitis than US alone. However, 2.12 times more 
subjects without appendicitis test positive with US + CT than with US alone. 
The 95% confi dence intervals for log rTP̂F = 0.133 and log rFP̂F = 0.754 are 
(0.055, 0.211) and (−0.005, 1.512), respectively. Exponentiating the confi dence 
limits yields confi dence intervals of (1.06, 1.23) for rTPF and (0.99, 4.54) for 
rFPF. Similar to the approach in Section 4.1, a 95% joint confi dence region for 
rTPF and rFPF can be constructed using a* = 1 − (1 − 0.05)½ = 0.025 instead 
of a = 0.05. Estimation of this joint confi dence region suggests that with 95% 
confi dence, the rTPF lies in (1.05, 1.25) and rFPF lies in (0.89, 5.05). Because 
the confi dence interval for rTPF excludes 1 but the interval for rFPF does not, 
we conclude that US + CT has superior TPF, but there is no evidence of a dif-
ference in FPF between US + CT and US alone.

Table 6
Results of Ultrasound and Ultrasound with CT (US + CT) in Subjects with 
Appendicitis (D = 1) and without Appendicitis (D = 0)

D = 1 D = 0

Y = 1 Y = 0  Y = 1 Y = 0

US  94 15 109  9 165 174
US + CT 133  2 135 20 162 182



Development and Evaluation of Classifi ers 103

4.2.2. Paired Design

Using data collected from a paired design in which all n study subjects 
receive binary tests A and B (Table 7), we estimate TP̂FA = n+

D(A)/nD, TP̂FB =
n+

D(B)/nD, FP̂FA = n+
D
–(A)/nD

–, and FP̂FB = n+
D
–(B)/nD

–. In the ratios, the numbers of 
diseased (nD) and nondiseased (nD

–) cancel out. Therefore, rTPF(A, B) and 
rFPF(A, B) can be estimated as rTP̂F = n+

D(A)/n+
D(B) and rFP̂F = n+

D
–(A)/n+

D
–(B),

respectively. The following variance estimates can be used to construct confi -
dence intervals for log rTPF and log rFPF (6):

vâr(log rTP̂F) = (b + c)/[(a + b)(a + c)] and

vâr(log rFP̂F) = ( f + g)/[(e + f )(e + g)].

The resulting confi dence intervals can be exponentiated to obtain confi dence 
intervals for rTPF and rFPF.

Example 2

Christenson and others (7) described the results of a cardiac troponin T rapid 
assay (RA) test and an enzyme-linked immunosorbent assay (ELISA) test in 
717 hospital patients: 510 with cardiac disease and 207 without cardiac disease. 
This is a paired design because all patients received both tests. Using the data 
in Table 8, we can compare the abilities of RA and ELISA to diagnose cardiac 
disease. We calculate rTP̂F(ELISA, RA) = 222/187 = 1.19 with 95% confi -
dence, interval (1.11, 1.26). Thus, ELISA detects 19% more subjects with 
cardiac disease than RA. However, rFP̂F(ELISA, RA) = 68/53 = 1.28 indicating 
that ELISA also detects 1.28 times more subjects without cardiac disease than 
the RA test. The corresponding 95% confi dence interval for rFPF is (1.07, 
1.54). Estimation of the 95% joint confi dence region suggests that with 95% 
confi dence rTPF(ELISA, RA) lies in (1.10, 1.28) and rFPF(ELISA, RA) lies 

Table 7
Paired Study Design Data with Test Results YA for Test A and YB for Test B

 Diseased (D = 1)  Nondiseased (D = 0)

YB = 1 YB = 0  YB = 1 YB = 0

YA = 1 a b n+
D(A) e f n+

D̄(A)
YA = 0 c d n−

D(A) g h n−
D̄(A)

n+
D(B) n−

D(B) nD n+
D̄(B) n−

D̄(B) nD̄
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in (1.04, 1.58). Because both do not contain 1, we conclude that the ELISA test 
has superior TPF but inferior FPF compared with the RA test.

McNemar’s test can also be used to test the null hypothesis H0 : rTPF(A, B)
= 1 and similarly to test H0 : rFPF(A, B) = 1 for two binary tests in a paired data 
setting (8). Specifi cally, to test the null hypothesis that rTPF(A, B) = 1, the 
McNemar’s statistic MD = (b − c)2/(b + c) is compared with a chi-square distri-
bution with 1 degree of freedom. Similarly, the null hypothesis that rFPF(A, B)
= 1 is tested by comparing the statistic MD

– = (f − g)2/(f + g) with a chi-square 
distribution with 1 degree of freedom.

Example 2 (Continued)

To test the hypotheses that the TPFs and FPFs for the rapid assay and ELISA 
tests are the same or equivalently that the relative accuracies equal 1, we 
calculate MD = (39 − 4)2/(39 + 4) = 28.5 and MD

– = (23 − 8)2/(23 + 8) = 7.3. 
Comparing the values of MD and MD

– to a chi-square distribution with 1 degree 
of freedom yields P values of <0.0001 and 0.007, respectively. These results 
indicate that the TPFs and FPFs for the two tests are different. These conclu-
sions are consistent with the confi dence intervals constructed above.

4.3. Estimating ROC Curves and Summary Indices

Next we discuss two approaches for estimating ROC curves and correspond-
ing AUC summary statistics. The approaches differ in the assumptions they 
make. Let YDi, i = 1,  .  .  .  , nD and YDj, j = 1,  .  .  .  , nD

– be the continuous test results 
for the diseased and nondiseased subjects, respectively.

4.3.1. Empirical ROC Curve

The fi rst approach we consider is the empirical approach, which makes no 
assumptions about the distribution of the data. Specifi cally, this approach esti-
mates the ROC curve using the simple observed estimates of TPF(c) and FPF(c)
for all cutpoints. Let TP̂F(c) FP̂F(c) be the proportion of diseased (nondiseased) 

Table 8
Results of Rapid Assay and ELISA Tests for Diagnosing Cardiac Disease

 Cardiac (D = 1) Noncardiac (D = 0)

 RA = 1 RA = 0  RA = 1 RA = 0

ELISA = 1 183  39 222 45  23  68
ELISA = 0  4 284 288  8 131 139
 187 323 510 53 154 207
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subjects with test results at or exceeding c. The empirical ROC curve RÔCe is 
then formed by plotting TP̂F(c) versus FP̂F(c) for each cutpoint. Extrapolation 
of the empirical ROC curve to all possible cutpoints can be made by connecting 
observed data points linearly. For data with no ties, adjacent points are connected 
with horizontal and vertical lines resulting in a step function. As the threshold 
changes, inclusion of a true-positive result produces a vertical jump of size 1/nD,
and inclusion of a false-positive result produces a horizontal jump of size 1/nD

–.
When there are ties in the data between diseased and nondiseased test results, 
both the true-positive and false-positive fractions change simul taneously, result-
ing in a point displaced both horizontally and vertically from the last point.

Example 3

A case-control study with 90 cases of pancreatic cancer and 51 controls 
without pancreatic cancer was conducted where all subjects had two serum 
biomarkers measured: a cancer antigen CA125 and a carbohydrate antigen 
CA19-9 (9). The empirical ROC curves for CA125 and CA19-9 are provided 
in Figure 2. The curves indicate that CA19-9 does a better job of discriminating 
those with pancreatic cancer from those without than does CA125.

In some settings, there is a particular threshold c for which there is interest 
to determine the variability of the corresponding point on the ROC curve 
[FPF(c), TPF(c)]. For example, PSA is routinely used to screen for prostate 
cancer. PSA is measured on a continuous scale, but the conventional criterion 
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Fig. 2. Empirical ROC curves 
for CA19-9 (solid curve) and 
CA125 (broken curve).
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for a positive PSA test is PSA > 4.0 ng/mL. Therefore, when evaluating the 
performance of PSA, there may be interest in estimating the FPF and TPF and 
corresponding variability when the threshold is fi xed at 4. The joint confi dence 
region can be calculated using the methods discussed in Section 4.1.

Alternatively, when a predefi ned threshold does not exist, one may be inter-
ested in estimating the TPF that corresponds with the threshold that yields a 
particular FPF. For example, one might be interested in estimating the TPF for 
PSA that corresponds with an FPF of 0.2. A variance expression for the esti-
mated TPF is provided on page 101 of Pepe (1). A method for estimating a 
confi dence band for the ROC curve is also available (10).

The AUC can be estimated as the area under the empirical ROC curve. It 
can be shown that this is equal to

AUC ,�
e Di Dj Di Dj D D

i

n

j

n

I Y Y I Y Y n n
DD

= > + ={ }
==
∑∑ [ ] [ ]

1
211

 (1)

where I[ ] is equal to 1 or 0 according to whether or not the expression in square 
brackets is true. This is equal to the Wilcoxon–Mann–Whitney two-sample 
statistic for comparing the distributions of test results in the diseased and non-
diseased populations (11). Observe that when there are no tied data points, then 
Equation 1 is calculated by comparing each disease test result with each non-
disease result. The proportion of pairs where the ordering is “correct” (i.e., YDi

> YD
–

j) is the empirical AUC. Variance expressions for AÛCe are available 
(11–13).

Example 3 (Continued)

Applying Equation 1 to the pancreatic cancer biomarker data yields esti-
mates of the empirical AUC of 0.71 for CA125 and 0.86 for CA19-9. As 
expected from Figure 2, the AUC is larger for CA19-9. Using the variance 
expression provided by Hanley and McNeil (12), we estimate that the variance 
of the empirical AUC is 0.0022 for CA125 and 0.00094 for CA19-9. To con-
struct a 95% confi dence interval for the AUC for CA125, we fi rst calculate a 
95% confi dence interval for logit AUC = log(AUC/(1 − AUC))

log
varAUC
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AUC

AUC AUC
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which is (0.431, 1.317). Then a 95% confi dence interval for the AUC can be 
calculated as

exp( )

exp( )

exp( )

exp( )

CI

CI

CI

CI
L

L

U

U1 1+ +
⎛
⎝⎜

⎞
⎠⎟,



Development and Evaluation of Classifi ers 107

which equals (0.61, 0.79) for CA125. Similarly, we calculate that the 95% 
confi dence interval for logit AUC for CA19-9 is (1.322, 2.331), which yields 
a confi dence interval of (0.79, 0.91) for the AUC.

The pAUC for a restricted range of FPF can be estimated directly from the 
estimated ROC curve as the area under the portion of the RÔCe of interest. 
Bootstrap methods (14) are recommended for estimating the variance of pÂUC
(15).

4.3.2. Binormal ROC Curve

Other approaches can be used for ROC curve estimation. If the test results 
from the diseased population and the test results from the nondiseased popula-
tion have normal distributions with means mD and mD

– and standard deviations 
sD and sD

–, then the corresponding ROC curve has the classic binormal function 
form:

 ROC(t) = Φ(a + bΦ−1(t)), (2)

where t is the FPF on the x-axis, ROC(t) is the TPF on the y-axis, Φ is the 
standard normal cumulative distribution function, a is the intercept, and b is 
the slope. This binormal model only requires that there exists a monotone 
transformation of the data that will make the diseased and nondiseased test 
results normally distributed.

There are different approaches for estimating a and b. One approach 
assumes that the test results from the diseased population are normally distrib-
uted with mean mD and standard deviation sD, and the test results from the 
nondiseased population are normally distributed with mean mD

– and standard 
deviation sD

–. Then a and b can be estimated using sample means and standard 
deviations

â = (m̂D − m̂D
–)/ŝ D and b̂ = ŝ D

–/ŝ D.

Other approaches assume that there exists some unknown transformation that 
makes the test results normally distributed. For example, Pepe (16) uses regres-
sion models to estimate a and b. On the other hand, Metz and others (17) catego-
rize the continuous test results and then estimate a and b using maximum 
likelihood by applying the Dorfman-Alf algorithm (18).

Using the binormal model, ROC(t), the TPF at a fi xed FPF = t can be esti-
mated as Φ(â + b̂Φ−1(t)) and the AUC can be estimated using

AUC
a

b
� =

+
⎛
⎝⎜

⎞
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Φ
ˆ

( ˆ )
.

/1 2 1 2
 (3)
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Wieand and others (9) provide an expression for the variance of this estimate. 
An approach for constructing confi dence bands for the binormal ROC curve is 
also available (19).

Example 3 (Continued)

For the pancreatic cancer data, we transformed the marker values to a natural 
logarithmic scale. The means and standard deviations of the transformed marker 
values are (m̂D, ŝ D, m̂D

–, ŝ D
–) = (3.26, 0.99, 2.67, 0.78) for CA125 and (m̂D, ŝ D, m̂D

–,
ŝ D

–) = (5.42, 2.34, 2.47, 0.86) for CA19-9. The slope and intercept for the binormal 
ROC curve for CA125 are estimated to be (3.26 − 2.67)/0.99 = 0.60 and 0.78/0.99 
= 0.79, respectively. Similarly, the slope and intercept for CA19-9 are estimated 
to be (5.42 − 2.47)/2.34 = 1.26 and 0.86/2.34 = 0.37, respectively. These estimates 
yield the binormal ROC curves provided in Figure 3. Using Equation 3, the AUC 
estimates are 0.68 and 0.88 for CA125 and CA19-9, respectively. These estimates 
are similar to the empirical estimates 0.71 and 0.86.

4.4. Comparing ROC Curves

In this section, approaches are discussed for comparing two ROC curves. 
We focus on comparing empirical ROC curves and binormal curves.

4.4.1. Empirical ROC Curves

Two ROC curves can be compared by comparing the corresponding AUC 
estimates. Let ∆AÛCe = AÛCAe − AÛCBe be the difference in the empirical 
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Fig. 3. ROC curves for the 
pancreatic cancer biomarkers 
estimated using binormal ROC 
model (solid curves). Empirical 
ROC curves are included (dotted 
curves). The top two curves cor-
respond with CA19-9. The bot-
tom two curves correspond with 
CA125.
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estimates of AUC for test A and test B. Then the null hypothesis of equal ROC 
curves for test A and test B can be tested by comparing ∆AÛCe /var(∆AÛCe)1/2

with a standard normal distribution. If the two ROC curves are estimated using 
different sets of samples (i.e., an unpaired design), then the variance of ∆AÛCe

can be estimated as the sum of the variances for the AUC estimates for tests A 
and B. If the two ROC curves are estimated using the same set of study subjects 
(i.e., a paired design), then the correlation between the AUC estimates must be 
taken into account (1).

Similar to comparing differences in empirical estimates of AUC, if there is 
particular interest in a restricted portion of the ROC curve, then comparisons 
of empirical estimates of pAUC can be used (9).

Example 3 (Continued)

The difference in the AUCs for the empirical ROC curves of the pancreatic 
cancer biomarkers is 0.86 − 0.71 = 0.15. Because this study has a paired design, 
the test statistic must take into account the correlation between the AUC esti-
mates for the two biomarkers. Using the variance expression provided on page 
108 of Pepe (1), we fi nd that the difference in AUCs is statistically signifi cantly 
different from 0 (P = 0.007).

4.4.2. Binormal ROC Curve

There are two approaches for comparing two binormal ROC curves. The fi rst 
approach is to compare the estimated intercept and slope parameters for the 
two curves (20). The second approach is to compare the estimated AUCs for 
the two tests (9). Specifi cally, when the AUCs are equal, ∆̂/v̂ar(∆̂)1/2 has a 
standard normal distribution where

ˆ ˆ
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and (â1, b̂1) and (â2, b̂2) are the estimated intercept and slope parameters for test
A and test B, respectively.

5. Combining Tests
Most diagnostic tests are not perfect. Sometimes tests yield too many false 

positives or false negatives to be used in clinical practice. When there are mul-
tiple imperfect tests available for detecting a particular disease (as is often the 
case), there is interest in determining whether combining multiple tests could 
yield a composite test that more accurately detects presence of disease. This is 
true for cancer biomarkers. For example, there has been research to determine 
whether combining the ratio of free to total PSA and total PSA could improve 
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the ability to discriminate those with and without prostate cancer. Combining 
tests is also popular in clinical practice when a clinician has to make a diagnosis 
based on numerous sources of information. This information can include test 
results, signs, symptoms, and medical history. In this section, we review methods 
available for combining multiple tests with the goal of developing a more 
accurate composite test.

5.1. Binary Tests

First consider the setting where there are two binary tests to be combined. 
Two binary tests can be combined by classifying a subject as diseased if both 
tests are positive and nondiseased otherwise. This is referred to as the believe
the negative (BN) rule (21), or the and rule. The BN rule is more stringent than 
either test alone. It decreases FPF and decreases TPF relative to the individual 
tests but maintains the TPF of the composite test above TPFA + TPFB − 1. 
Therefore, this combination strategy is used when both tests have high TPF but 
also have FPF that is too high because the rule decreases FPF while hopefully 
not reducing TPF very much.

Another approach to combining two binary tests is to consider a subject 
diseased if either test is positive. This is referred to as the believe the positive
(BP) rule, or the or rule. The BP rule increases TPF relative to the component 
tests. It also increases the FPF, but by no more than FPFA + FPFB. This combi-
nation strategy is used when the tests have low FPFs but inadequate TPFs.

Example 2 (Continued)

Consider combining the results of the rapid assay (RA) test and ELISA test 
(Table 8). The BP combination has TPF = (183 + 39 + 4)/510 = 0.443 and FPF 
= (45 + 23 + 8)/207 = 0.37, which are not much better than ELISA, rTPF(BP 
combination, ELISA) = 0.443/0.435 = 1.02 and rFPF(BP combination, ELISA) 
= 0.37/0.33 = 1.12. The BN combination is not much better than the RA test, 
rTPF(BN combination, RA) = 0.36/0.37 = 0.97 and rFPF(BN combination, RA) 
= 0.22/0.26 = 0.85. Therefore, we conclude that neither combination provides 
a particularly useful improvement.

5.2. Continuous Tests

Combining multiple continuous tests requires an algorithm to classify sub-
jects as either diseased or not. For example, protein mass spectrometry profi les 
and gene expression arrays (see Chapter 20) yield high-dimensional data. The 
data are often combined to discriminate between those with and without disease. 
There are many classifi cation algorithms available. Some of these algorithms 
estimate the risk scores or predicted probabilities of disease given the test 
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values. We denote the set of test values Y. Let RS(Y) = P(D = 1|Y) denote the 
risk score. The risk score has the important property that it or any monotone 
increasing function of it has the best ROC curve among all possible functions 
of Y (22). It is the best combination for discriminating diseased from nondis-
eased subjects.

Simple logistic regression (see Chapter 14) is the most commonly used 
method for estimating risk scores. Logistic regression has the appealing prop-
erty that it can handle data from case-control studies, which are common study 
designs when evaluating biomarkers. Modifi cations to logistic regression have 
been proposed (22) as well as nonparametric approaches (23). Other classifi ca-
tion algorithms that are used include Bayesian methods, logic regression (24),
classifi cation trees (25), artifi cial neural networks, support vector machines
(26), and boosting (27,28). The best approach for estimating the risk score 
depends on the particular data available and goal of the analysis.

Example 3 (Continued)

Using the pancreatic cancer biomarker data, we combine the CA125 and 
CA19-9 marker values using the following logistic regression model:

log itP(D = 1|Y) = b0 + b1 log(CA125) + b2 log(CA19-9).

The estimated parameters are b̂0 = −5.78, b̂1 = 0.931, and b̂2 = 1.029.
The empirical ROC curve for the combined test is provided in Figure 4. The 

FPF

T
P

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4. Empirical ROC curves 
for CA19-9 (solid line), CA125 
(dotted line), and combined test 
(dashed line).
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empirical AUC for the combined test is 0.89, which is only slightly better than 
the AUC value of 0.86 for CA19-9 alone.

It is well-known that risk scores or prediction rules tend to have worse per-
formance when applied to a different population than the one in which the rule 
was constructed. There are two reasons for why this occurs. First, the new 
population may differ from that studied in regard to factors affecting disease 
or elements in the risk score. Second, there is the statistical phenomenon of 
shrinkage (29,30). Therefore, it is important to carefully validate the risk score 
before it is applied in practice. This can be achieved using external or internal
validation methods. Ideally, the performance of the prediction rule is con-
structed in one data set and validated in another. This is known as external 
validation. Alternatively, the data set can be split into a training set in which 
the risk score is developed and a test set where the risk score is evaluated. This 
is referred to as cross-validation. Approaches for adjusting for shrinkage are 
available (31).

6. Additional Topics
6.1. Verifi cation Bias

Sometimes the gold standard test to defi nitively assess presence or absence 
of disease is too costly or invasive to be applied to all study subjects. When 
this is the case, subjects who appear to be at high risk may be more likely to 
have disease status assessed via the gold standard test than those who appear 
to be at lower risk. For example, subjects testing positive with the new test may 
be more likely to be verifi ed for disease than those that screen negative. This 
can result in biased estimates of accuracy if the estimation methods do not 
properly account for nonrandom disease ascertainment. This bias is known as 
verifi cation bias (Table 3). Methods for estimating accuracy that properly 
account for the nonrandom disease ascertainment are available (32,33).

6.2. Errors in the Reference Test

It was assumed in this chapter that disease status, D, is defi ned and measured 
by a perfect gold standard. Sometimes only an imperfect reference is measured. 
Imperfect reference tests are sometimes referred to as bronze or alloy standards.
For example, diagnostic tests for Chlamydia trachomatis, among other infec-
tions, must be evaluated using specimens from persons whose true infection 
status cannot be known with certainty. Lacking a perfect gold standard, cell 
culture has been used as an imperfect reference. It is generally accepted that 
FPF is close to 0 for culture, but TPF is less than 1. It is important to be aware 
that small errors in imperfect reference tests can lead to a large bias in the 
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estimated TPF and FPF (34). In addition, the bias can lead to overoptimistic 
TPF and FPF values or to underestimation of test performance.

6.3. Regression

As noted in Section 3.5, it is important to determine factors that affect test 
performance. This can be achieved using regression methodology. Regression 
analysis can also be used to compare the performance of multiple tests while 
controlling for covariates. Specifi cally, binary regression methods can be used 
to assess and compare effects on the TPF and FPF (35) and on predictive values 
(36) for one or more binary tests. For continuous and ordinal tests, there are 
several approaches. One approach is to model covariate effects on the test 
results using standard regression methods and then calculate the induced effects 
of covariates on the ROC curves (37,38). Another approach is to model covari-
ate effects on the ROC curves (16,39) or on their AUCs (15,40,41).

6.4. Evaluating Usefulness

After a test is shown to adequately identify presence or absence of disease, 
the next step is to determine the practical usefulness of the test in managing 
patients. It is important to perform large prospective phase 5 population-based 
studies that evaluate the impact that testing has on disease mortality and mor-
bidity, subject willingness to be screened, costs of screening, costs of erroneous 
screening test results, and benefi ts relating to detection of subclinical disease. 
Even an accurate test may not be useful if subjects are not willing to be 
screened, to undergo further workup and treatment after screening positive, or 
if treatment is ineffective for disease detected by the test.

7. Conclusion
This chapter reviewed methods for developing and evaluating the perform-

ance of classifi ers. Diagnostic tests, screening tests, medical tests, biomarkers, 
and prediction rules can all be considered classifi ers. Different measures of 
classifi cation accuracy along with corresponding estimation methods were pre-
sented. In addition, methods for combining multiple tests were introduced. The 
topics discussed in this chapter are described in greater detail in books by Pepe 
(1) and Zhou and others (42). Software to implement many of the methods 
discussed in this chapter is available on-line at http://www.fhcrc.org/labs/pepe/
book and ftp://ftp.wiley.com/public/sci_tech_med/statistical_methods/.
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Comparison of Means

Nancy Berman

Summary
This chapter describes statistical methods to test for differences between means or other 

measures of central tendency of 2 or more populations. Parametric tests and nonparametric tests 
are included. Methods for pairwise comparisons when more than 2 groups are being compared 
are included.

Key Words: Analysis of variance; contrasts; Kruskal-Wallace test; t-test; Wilcoxon-Mann-
Whitney test; Wilcoxon signed rank test.

1. Introduction
In this chapter, we will present methods to test hypotheses about means. We 

will use Student’s t-test to test hypotheses for paired samples or to compare 2 
independent groups and we will use analysis of variance (ANOVA) to compare 
means in more than 2 independent groups. We will also describe tests that may 
be used when the t-test or ANOVA would not be appropriate. These are called 
nonparametric tests, which compare measures of central tendency that are dif-
ferent from the mean. In addition, we will introduce the F distribution, which 
is used in ANOVA and also in comparing variances of independent groups.

We will use the following notation:

Parameter Population value Sample value

Mean µ x̄
Standard deviation σ s
Variance σ2 s2

Sample size n
Sample value xi
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When there is more than one sample to discuss, we will use numeric subscripts 
to indicate the groups (e.g., µ1, x̄1, s1, n1 for group 1; µ2, x̄2, m2, s2, and n2 for 
group 2, etc.). We will use double subscripts for values in each group (e.g., xij,
where i is the group and j is the sample number). Other notations will be intro-
duced as needed.

2. Test Statistics
2.1. The t-Test

In Chapter 4, you were introduced to the t-test for testing the hypothesis 
that the mean of a sample was equal to a given value. In this chapter, we will 
show the use of the t-test for two other comparisons of means, fi rst when the 
samples are paired and second for independent groups. We recall that the 
t-statistic has the general form

t = difference of means

standard error
,

where the standard error is the standard error of the numerator. The t-
distribution is a “sampling” distribution, that is, it does not assume any knowl-
edge about the true parameters. It is important to remember that the t-distribution
is actually a family of distributions, each one identifi ed by a parameter called 
the degrees of freedom (d.f.), which is related to the sample size. It is similar 
in shape to the standard normal distribution, and as the degrees of freedom 
increase, it becomes more similar (Fig. 1).

If you have computed a t-statistic and are looking it up in a table to calculate 
the P value, you will need to use the degrees of freedom to get the correct 
P value. If you are using a computer program, it will probably compute this for 
you from the sample size.

2.2. The F Distribution

The F statistic is another sampling distribution that will be used in this 
chapter. The F statistic is the ratio of two independent random variables that 
have chi-square distributions (Chapter 5). In this chapter and in many other 
applications, the F statistic is the ratio of 2 independent sample variances:

F
s

s
= 1

2

2
2
.  (1)

Note that there are two parameters that go with an F distribution, the degrees 
of freedom for the numerator and the degrees of freedom for the 
denominator.
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3. t-Tests Comparing Two Means
3.1. Paired Samples

Paired samples means that there are two groups of samples, that each sample 
in the fi rst group is related to one and only one sample in the second group, 
and that there are no unpaired samples in either group. Both groups have the 
same sample size, n. The most common types of paired samples are measure-
ments on the same subject before and after an intervention, measurements on 
a group of experimental animals and their pair-fed matches, or measurements 
on subjects from an affected group and matched subjects from a control group. 
In order to compute the t-statistic, you must fi rst compute the difference between 
each of the paired values,

 di = xi1 − xi2, (2)

and then compute the mean and standard deviation, x̄d and sd, of the differences. 
It is assumed that the di have a normal distribution. This is guaranteed if both 
groups are assumed to come from underlying normal distributions.

Usually the difference is compared with zero, so the null and alternate 
hypotheses are

df=1
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Fig. 1. Values of the t-distribution for different degrees of freedom.
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H0 : δ = 0

H1 : δ ≠ 0,

where δ is the (unknown) true value of the mean difference.
The t-statistic is simply

t
x c

s n
d

d

= −
.  (3)

If you have detected that this looks a lot like the t-test on a single sample, 
you are right! There are a few points to remember. One is that although the 
mean of the difference, x̄d, is equal to the difference of the means, x̄1 − x̄2, you 
can’t compute the standard deviation for the difference from the standard devia-
tions of the 2 groups; you must compute the differences and then their standard 
deviation. Another is that you can call either group 1 or 2, but you usually do 
this based on your hypothesis. If you want to compare the difference to a con-
stant, c, other than zero, and your software doesn’t support it, then you can 
subtract c from the values or mean in the fi rst group, but not in both.

Example 1

Table 1 shows pre- and posttreatment data from a sample of subjects who 
participated in a study of the psychobiology of depression (1). The sample value 
is cerebrospinal fl uid: 3-methoxy-4-hydroxyphenylglycol (CSF MHPG). The 
groups are composed of unipolar depressed subjects and bipolar depressed 
subjects. We include the difference between values before and after treatment. 
We will test the null hypothesis that the difference is not zero in the unipolar 
group.

Using Equation 3, the t-statistic for the unipolar group is

t = =31 61

8 20 12
13 35

.

.
. with 11 degrees of freedom.

The P value for this statistic is <0.0001, so we conclude that there is a signifi -
cant change in CSH MHPG in the unipolar group.

We can test the same hypothesis for the bipolar group. The t-statistic is

t = =16 33

6 89 12
8 21

.

.
. with 11 degrees of freedom.

The P value for this statistic is also <0.0001. Therefore, we conclude that there 
is also a signifi cant change in CSH MHPG in the bipolar group.

In the next section, we will use a t-test to see if there are differences between 
the groups in the amount of change.
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3.2. The Two-Sample t-Test in Independent Groups

The t-test is also used to compare means in 2 independent groups. In this case, 
the groups are independent, there is no matching, and the sample sizes may be 
different. There are 2 assumptions. The fi rst is that each sample has an underlying 
normal distribution. This may be relaxed somewhat if the variables are continu-
ous and the distribution is symmetric. The other assumption is that the standard 
deviations in the 2 samples are the same. This is more restrictive, and we will 
address what to do if this is violated later in this section. For now, we will assume 
that both assumptions are met. The null and alternate hypotheses are

H0 : µ1 = µ2

H1 : µ1 ≠ µ2.

The quantity we are interested in is the difference between the population 
means, µ1 − µ2. We use both sample standard deviations to compute the “pooled” 
standard deviation as

s
n s n s

n n
p = −( ) + −( )

+ −
1 1

2
2 2

2

1 2

1 1

2
.  (4)

Table 1
Pre- and Posttreatment Levels and Change in CSF MHPG for 2 
Diagnostic Groups (expressed in pmol/ml)

 Unipolar Bipolar

 Pretreatment Posttreatment Change Pretreatment Posttreatment Change

 63.7 36.7 27 26.5 18.3 8.2
 61 37.8 23.2 38.6 25.8 12.8
 59 32.8 26.2 59 24.6 34.4
 65.2 24.6 40.6 42.8 28.4 14.4
 59.6 24.4 35.2 28.7 19.2 9.5
 59.7 22.7 37 47.7 32.6 15.1
 79.3 38.5 40.8 44.7 27.9 16.8
 60.6 28.9 31.7 47.7 28.6 19.1
 69.5 32.7 36.8 52.7 35.3 17.4
 54.9 37.7 17.2 54.6 37.8 16.8
 54.2 31.8 22.4 40.8 19.8 21
 67.5 26.3 41.2 40.8 30.3 10.5
Mean 62.85 31.24 31.61 43.72 27.38 16.33
Var 47.68 33.26 67.26 93.76 38.81 47.46
SD 6.91 5.77 8.20 9.68 6.23 6.89
Median   33.45   15.95
n 12 12 12 12 12 12
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The t-statistic comparing the means is simply

t
x x

s
n n

p

= −

+

1 2

1 2

1 1
,  (5)

which has n1 + n2 − 2 degrees of freedom.
You will recall that one of the assumptions for the t-test on independent 

samples is that they have the same variance. If the data in 2 groups are normally 
distributed, this assumption may be tested using an F statistic. The hypotheses 
are

H0 : σ1
2 = σ2

2

H1 : σ1
2 ≠ σ2

2.

The F statistic to test this hypothesis is the ratio of the sample variances (see 
Section 2.1), with the larger variance in the numerator:

F
s

s
= 1

2

2
2
.  (6)

The degrees of freedom for the numerator are n1 − 1 and the degrees of freedom 
for the denominator are n2 − 1. If F statistic is very large, so that the P value 
is small, then there is evidence that the variances are not equal.

The F statistic is most widely used for testing equality of variances for 2 
independent samples, however it is not always accurate when the distribution 
of the two samples is not precisely normal. An alternative is the Brown-For-
sythe (BF) test (2), which looks at the spread of the data in absolute terms. It 
is usually used with comparison of multiple groups in ANOVA (see below) but 
may be used with 2 groups. To compute the BF statistic, we fi rst calculate the 
median of each group, mdi, and then compute the absolute value of the differ-
ence between each sample and its group median:

 bfij = |xij − mdi|. (7)

The BF test is simply a 2-sample t-test comparing the bfij in the two groups.
If the variances of the 2 groups are not equal, a modifi ed estimate of the 

standard error of the difference is used and the degrees of freedom for the 
t-statistic are adjusted. The standard error of the difference is estimated as

s
s s

n n
np = +

+
1
2

2
2

1 2

 (8)
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and the t-statistic is

′ = −
t

x x

snp

1 2 .  (9)

The distribution of this statistic can be approximated by a t-distribution with 
a different number of degrees of freedom. Several statisticians have developed 
methods for estimating the best matching distribution; the one most commonly 
used at this time is due to Satterthwaite (3). The formula for computing these 
degrees of freedom is complicated and will not be given here.

Example 2

In Example 1, we computed the change after treatment in CSF MHPG in 
both the unipolar and bipolar groups (Table 1). We would like to test whether 
the change is the same in both groups. The null hypothesis is that the mean 
change in unipolar and bipolar groups are equal. To test whether variances are 
equal in the 2 groups, using Equation 6, the F statistic is

F = =67 26

47 46
1 42

.

.
. .

The n for the unipolar group is 12, the n for the bipolar group is also 12, so 
that the F statistic has 11 and 11 degrees of freedom. From a table, the P value 
for an F statistic with value 1.42 and 11 and 11 degrees of freedom is 0.57, so 
we can assume that the variances are equal.

To use the BF test, the absolute differences from the medians for the changes 
in CSH MHPG in Table 1 are shown in Table 2. The t-statistic for these data 
is 1.28 with 22 degrees of freedom, which has a P value of 0.2131. This test 
also does not reject the null hypothesis that the variances are equal.

Therefore we compute the test statistic using Equation 4 and Equation 5:

sp = ⋅ + ⋅ =11 67 26 11 7 46

22
7 57

. .
.

and

t = −

⋅ +
=31 61 16 33

7 57
1

12
1

12

4 94
. .

.

. with 22 degrees of freedom.

The P value for this statistic is <0.0001 so we can conclude that there is a dif-
ference between the 2 groups in the amount of change.

A good software package may automatically perform the F test and give you 
the results of the F test along with the t-value, degrees of freedom, and P value 
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for both equal and unequal variances. Other packages may allow you to do the 
F test separately and then choose the t-test that goes with the results. Most 
packages do not do the BF test as a t-test option, but you may be able to do it 
by computing the deviations and using a t-test. Alternatively, the t-test on 
independent groups is equivalent to an ANOVA on 2 groups (Section 5.1), so 
you may use ANOVA software to test this. If your software assumes equal 
variances and does not allow for adjusted t-values, then, unless you can be sure 
that the variances are equal, you should try to run it on a different package or 
use a nonparametric approach (Section 4).

4. Tests of Central Tendency When the Distribution Is Not Normal
The basic assumption of a t-test is that the underlying distribution of the 

group(s) is normal. It is a fairly robust test, so that it may be appropriate if the 
sample size is large and the distribution is symmetric about the central value. 
Sometimes the data can be transformed so that it meets the assumption of a 
normal distribution. For example, many biological variables have a distinct 
positive skew. Often, the logarithm of the variables has a normal distribution, 
so that you can compare the samples using the log-transformed values. Just 
remember that you are comparing the geometric mean, not the arithmetic mean 
when you compare log-transformed variables.

Table 2 
Absolute Deviation from the Median

 Unipolar Bipolar

 6.45 7.75
 10.25 3.15
 7.25 18.45
 7.15 1.55
 1.75 6.45
 3.55 0.85
 7.35 0.85
 1.75 3.15
 3.35 1.45
 16.25 0.85
 11.05 5.05
 7.75 5.45
Mean 6.99 4.58
Var 17.63 24.70
SD 4.20 4.97
n 12 12
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If the data cannot be transformed to have a normal distribution, then the t-test
will not give the correct P value. There are alternatives to the t-test for non-
normally distributed variables. These tests are referred to as nonparametric 
tests. They are usually based on ranks rather than actual values. To compute 
the ranks for a sample, the values are arranged in increasing order and then 
numbered sequentially from 1 to the sample size, n. Sometimes 2 or more 
samples will have the same value. In this case, each one gets the average of the 
2 or more ranks that are tied. Table 3 shows the ranking for 12 numbers with 
1 tie. These tests also use the median as the measure of central tendency, rather 
than the mean.

Most software packages can compute nonparametric tests and give the P
values for test statistic. Alternatively, the P values may be given in tables. Many 
tables for nonparametric tests just give the critical values for certain sample 
sizes and other statistics. If the sample size is large enough, >20, then there is 
a large sample statistic that can be used that has a distribution close to a standard 
distribution, such as the normal or chi-square distribution. Most software pack-
ages compute this large-sample statistic and P value, as well as or instead of 
the exact statistic.

4.1. The Sign Test for a Single Sample

The null hypothesis for this test is that the median of the sample is a certain 
value, C. Using θ to represent the true value of the median this is stated as

H0 : θ = C

H1 : θ ≠ C.

The sign test is based on the binomial test (Chapter 5). The data is arranged 
in order and the number of samples that are bigger than the median is computed. 
If the median is C, then you would expect half the samples to be larger than C
and half to be smaller, so that P(>C) = P(<C) = 0.5. Suppose you have a sample 
size of n and r samples are larger than C; then using the binomial distribution 
the probability of getting r samples larger than C is

p r
n

r n r

n

r n r
r n r

r

( ) =
−( )

−( ) =
−( )

⎛
⎝

⎞
⎠

−!

! !
. .

!

! !
.0 5 1 0 5

1

2
 (10)

Table 3
Twelve Numbers with Ranks

Value 2 19 23 31 35 47 56 56 59 61 98 98
Rank 1  2  3  4  5  6  7.5  7.5  9 10 11 12
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Many statistical books have tables of the binomial probability for different 
combinations of n and r. Because hypothesis testing is based on the probability 
of getting the observed result or something rarer for a 2-sided test, we must 
compute the binomial probability for r + 1, r + 2, and so on, up to n. Then these 
are added together to give the answer (i.e., the probability of getting this number 
of samples larger than C if the median value is C).

Example 3

Table 4 shows the behavioral scores for the same group of unipolar depressed 
subjects that were in Table 1. We assume from the literature that the true 
median score is 5. There are 9 samples larger than C.

Using the binomial distribution the probability of getting 9 or more samples 
is computed as in Table 5.

For a 2-sided test, we calculate 2 × 0.0730 = 0.1460 and we do not reject 
the null hypothesis that the median is C.

For large samples, n > 20, the following has approximately a standard normal 
distribution:

z
X n

n
= − 0 5

0 5

.

.
,  (11)

where X = r − 0.5 if r ≥ n/2 or X = r + 0.5 if r < n/2.

Example 3 (Continued)

We illustrate using the large sample approximation (although the exact dis-
tribution is more appropriate for this example). We let X = 9 − 0.5 = 8.5, then 

Table 4
Mood Scores in 12 Unipolar Subjects

3.45 4.56 4.68 5.06 5.41 6.63 6.99 7.81 8.22 8.81 9.14 9.86

Table 5
Binomial Probabilities for n = 21 and r ≥ 9

r P(r)

9 0.0537
 10 0.0161
 11 0.0029
 12 0.0002
Sum  0.0730
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z = 1.44 and the 2-sided P value is 0.150, which agrees closely with the exact 
distribution.

4.2. The Wilcoxon Signed Rank Test for Paired Samples

The most commonly used nonparametric test to compare paired samples is 
the Wilcoxon signed rank test. This is similar to the sign test but has the advan-
tage that the magnitudes of the ranks are included in the calculations. It assumes 
that the differences are distributed symmetrically about the median difference, 
which would be expected if there were no real underlying difference between 
the paired values. As with the paired t-test, the analysis is based on the differ-
ence between the paired values. Using θ to represent the median of the differ-
ences, the hypotheses are

H0 : θ = 0

H1 : θ ≠ 0.

The process is as follows. The differences are ranked on the basis of their 
magnitude, ignoring the sign. Then the signs are restored to the rankings. The 
sum of the positive ranks, Sp, and of the negative ranks, Sn, are computed. The 
test criterion, T, is the smaller of these 2 sums. If the sample is small (<16),
then the critical value for T must be looked up in a table (4). If the sample is 
large, then you may use the statistic in Equation 12, which has an approxi-
mately standard normal distribution:

z
T n n

n n n
= + − +( )

+( ) +( )
0 5 0 25 1

1 2 1 24

. .
.  (12)

Example 4

Table 6 shows the behavioral scales for the unipolar depressed subjects 
before and after treatment. The third column shows the differences, the fourth 
column shows the ranks on unsigned values, and the fi fth column shows the 
signed ranks.

For this example, the sum of the positive ranks is 57 and the sum of the 
negative ranks is 21, so T = 21. Tables (4) show that this is above the critical 
value for 0.05 for the signed rank test on 12 subjects, so we do not reject the 
null hypothesis and assume that there was no change.

An n of 12 is too small for the normal approximation to be correct, but if 
we substitute T = 21 and n = 12 in Equation 12, then we get z = 1.37 and a 
P value of 0.17.

If the set of differences between pairs in a paired sample are used, then this 
is logically the same as the test of a single sample, so we could use the sign 
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test to test the null hypothesis that the median is zero. However, the Wilcoxon 
signed rank test assumes that the values are distributed symmetrically about the 
median, uses more information, and, in general, is more powerful than the sign 
test (see Chapter 4). We could also use the Wilcoxon signed rank test with 
a single sample if the assumption of symmetry about the median was 
reasonable.

Example 4 (Continued)

If we use the sign test to test the hypothesis of a median equal to zero, we 
have 8 of 12 samples above the median. This gives us a 2-sided P value of 
0.3877. The large sample approximation is z = 0.86, which gives us a 2-sided 
P value of 0.3897. This result is approximately double the P value obtained 
from the Wilcoxon signed rank test and therefore, although neither value is in 
the critical region, agrees with the notion that the Wilcoxon signed rank test is 
more powerful when the assumptions are met.

4.3. The Wilcoxon-Mann-Whitney Test to Compare Two Groups

We next look at the test known as the Wilcoxon rank sum test and sometimes 
as the Mann-Whitney U test. The underlying concept is that if two populations 
have the same distribution, then if you mix them together you would expect to 
fi nd equal numbers from both groups above and below the overall median. 
Using θ to represent the true shift between the 2 distributions, the null hypoth-
esis is

Table 6
Baseline and Treatment Scales and Change Ranks and Signed Ranks

Baseline Treatment Difference Absolute value Rank Signed rank

7.81 7.88 −0.07 0.07  1  −1
4.56 0.40  4.16 4.16 12  12
8.22 9.20 −0.98 0.98  5  −5
9.14 6.29  2.85 2.85  9  9
5.41 3.34  2.07 2.07  8  8
8.81 8.12  0.69 0.69  2  2
6.99 6.14  0.85 0.85  3  3
9.86 6.99  2.86 2.86 10  10
4.68 3.04  1.65 1.65  7  7
3.45 4.40 −0.95 0.95  4  −4
5.06 8.91 −3.85 3.85 11 −11
6.63 5.23  1.40 1.40  6  6
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H0 : θ = 0

H1 : θ ≠ 0.

We begin by computing the ranks for the combined group of subjects. To 
use the standard notation, we assume that one group has m subjects and the 
other has n subjects, and m and n need not be equal.

We then compute Sm and Sn, which are the sums of the ranks of the subjects 
in the groups with m and n subjects, respectively. The test statistic can be cal-
culated for either m or n:

U S m m

U S n n
m m

n n

= − +( )
= − +( )

0 5 1

0 5 1

.

. .
 (13)

Because Um = mn − Un, only one need be calculated. For small samples, the 
critical region must be obtained from tables (4) or from software, and is usually 
based on the smallest sample. The large sample approximation (for either m or 
n > 20 or both) is

z
U mn

mn m n
= + −

+ +( )
0 5 0 5

1 12

. .
,  (14)

where U is the smaller of Um and Un. This statistic has approximately a standard 
normal distribution. (Note the 12 in the denominator is fi xed. It is not related 
to the sample size, although it may seem so in the next example.)

Example 5

Table 7 shows the depression scales for unipolar and bipolar subjects and 
the rank for each value using the total group, where m = n = 12. The U statistics 
from Equations 13 are

Um = 176 − 0.5 × 12 × 13 = 98 and

Un = 12 × 12 − 98 = 46.

From tables (4), the 5% critical region for a 2-tailed test is U ≤ 37, therefore 
we do not reject the null hypothesis.

The large sample statistic from Equation 14 is

z = + − × ×
× ×

= −46 0 5 0 05 12 12

12 12 25 12
1 47

. .
. .

The 2-sided P value for −1.47 is 0.1410, so we do not reject the null 
hypothesis.
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5. Comparisons of Means in More Than Two Groups: ANOVA
5.1. ANOVA

In many situations, you want to compare the means in more than 2 groups. 
The null hypothesis is that the means in all the groups are equal. One way to 
do this would be to run t-tests as in Section 3.2 on all possible pairs of groups. 
There are several problems with this approach. First, you are ignoring the 
structure of the design but not looking fi rst to see if there is any difference 
between any of the groups. Second, you are also ignoring the design because 
each t-test will use a measure of the variation in the data based on only the 2 
groups being tested, which will differ for each test, instead of using all the data 
to estimate the variation in the total sample. Third, you are increasing the prob-
ability of fi nding a difference where none exists (type I error; Chapter 4). To 
understand it, suppose you have 3 groups so you do 3 t-tests. You set the criti-
cal value of α to 0.05 for each test. Then the probability of 1 or more signifi cant 
results if the null hypothesis is true is 1 − (1 − 0.05)3 ≈ 0.15. This is called the 
problem of multiple comparisons, and you will see it addressed further on in 
this chapter.

Analysis of variance was developed to analyze this type of data without 
creating these problems. The basic analysis is a global test for any differences 
in means between groups. These can be followed by secondary tests to locate 

Table 7
Depression Scores and Overall Ranks for 2 Groups 
of Subjects

 Unipolar Bipolar

 Score Rank Score Rank

 7.81  19 8.52  21
 4.56  7 7.07  17
 8.22  20 6.34  13
 9.14  23 7.32  18
 5.41  11 5.78  12
 8.81  22 6.77  15
 6.99  16 3.68  3
 9.86  24 4.93  9
 4.68  8 3.27  1
 3.45  2 4.27  6
 5.06  10 4.19  5
 6.63  14 4.09  4
Sum of ranks  176  124
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these differences, using the information from the total sample and adjusting for 
multiple comparisons. The groups are assumed to represent some characteristic 
referred to as the factor or independent variable, and the analysis tests the effect
of this factor on the outcome. (Sometimes the terms factor and effect are used 
interchangeably.) The different groups are referred to as levels of the factor, 
whether or not that is a literal description. Levels may refer to groups that 
represent different doses of a drug or groups which represent different 
diagnoses.

The logic behind ANOVA is as follows. Assume you would like to compare 
the means between g groups, where g ≥ 3. Each group has an underlying normal 
distribution, and, very importantly, all g groups have the same underlying vari-
ance. We denote the mean of each group as x̄i, the standard deviation as Si, the 
sample size as ni, and the jth sample in group i as xij. Treating all samples as a 
single group, the total sample size is N, the grand mean is denoted x̄, and the 
total variation is St

2. Recall that the variance is calculated as the sum of squares 
around the mean divided by the sample size −1. Each component of the sum 
of squares around the grand mean can be rewritten as follows:

 xij − x̄ = (xij − x̄i) + (x̄i − x̄). (15)

Thus the total variation can be divided into 2 parts, the variation due to the 
difference of each sample from its group mean, and the variation due to the 
difference between the group means and the grand mean. If the group means 
are equal, then the variation due to the difference between them and the grand 
mean should be small; if at least 2 of the group means are different, then this 
component should be larger. This is illustrated in Figures 2A and 2B. Both 
have 3 groups of measurements, each group has the same variance. The three 
groups are shown on the left-hand side of the fi gure. The right-hand side of 
each fi gure shows the 3 means compared to the overall mean. In Figure 2A,
the means of the 3 groups are approximately equal and the dispersion of the 
group means is also small. In Figure 2B, the means are very different, and the 
variation of the group means from the overall mean is large.

Calculations for the ANOVA are based on the sum of squares of deviations 
from the mean as shown in Table 8. Each sum of squares has a degrees of 
freedom associated with it.

SSB is the between groups sum of squares of deviations of the group means 
from the overall mean. The degrees of freedom are equal to the number of 
groups minus 1.

SSE is the sum of squares of the deviation of each sample from its group 
mean, often called the error sum of squares. It has degrees of freedom equal 
to the total sample size minus the number of groups.
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Fig. 2. Three groups with means and variances shown separately and for the com-
bined group. (A) Groups with equal means and variances; (B) groups with equal vari-
ances and unequal means.

Table 8
Calculations for Analysis of Variance

Source Sum of squares d.f. Mean square

Between groups SSB = Σi(x̄ i − x̄)2 g − 1 MSB = SSB/(g − 1)
Error SSE = ΣiΣjnj(xij − x̄ i)2 N − g MSE = SSE/(N − g)
Total SST = Σi Σj(xij − x̄)2 N − 1

SST is the total sum of squares of each observation about the group mean 
and is equal to SSB + SSE. It has N − 1 degrees of freedom.

The values in the fourth column of Table 8 are called the mean squares for 
SSB and SSE. MSB and MSE are computed by dividing the sums of squares 
by their degrees of freedom. MSB is the estimates of the variation due to dif-
ferences between group means, and MSE is the estimates of the variation due 
to the variation within groups. The test statistic is

 F = MSB/MSE. (16)
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This statistic has an F distribution with the degrees of freedom as given for the 
numerator and denominator. If the means are very different, the MSB will be 
large compared with MSE, the F ratio will be very large, and the P value for 
the test will be small.

To test the assumption of equal variances, we can use the BF test defi ned in 
Section 3.2. As before, we compute the dispersion of the samples about their 
median as the absolute value of the difference between the sample value and 
its group median. We use ANOVA to test for differences between these disper-
sions. If the ANOVA is signifi cant, then it means that the assumption of equal 
variances is not satisfi ed, and a modifi cation of the ANOVA should be used. 
The simplest modifi cation is by Box (5), which, similar to the modifi cations of 
the t-test, computes different degrees of freedom for the F statistic. Box’s test 
requires equal sample sizes; a test by Welch (6), which computes a different F
statistic and degrees of freedom, does not require this. These tests should be 
available in most software packages.

Example 6

Table 9 shows the log of testosterone levels in a sample of hypogonadal 
men who participated in a study of testosterone replacement after 30 days of 
treatment (7). There were 3 groups, each treated with either a different dosage 
or method of replacement of the hormone. Log transformed values were used 
because the raw value was not normally distributed. We wish to determine if 
there are any differences between groups.

Table 10 shows the computation of mean absolute deviance for the BF test 
of equality of variances. The F statistic for this test is 2.16 with 2 and 54 degrees 
of freedom. The P value is 0.1248, thus we can assume the variances are 
equal.

The results of the ANOVA are presented in Table 11, which shows the sums 
of squares, the degrees of freedom, the means squares, and F statistic.

The degrees of freedom for the F statistic are 2 and 54. The P value for the 
F statistic is <0.0001, so we reject the null hypothesis.

Table 11 is the format used by most software packages for presenting the 
results of an ANOVA, although the labeling of the mean squares may vary.

The above describes the simplest form of ANOVA. The result is called the 
effect of different groups. In this discussion, we are only testing fi xed effects,
that is we assume that the groups represent all levels of the group effect we are 
interested in. For example, if we were testing the effect of different doses of a 
medication on an outcome measure, if only 3 doses would be used and we had 
a group using each, the dosage would be a fi xed effect. The opposite of a fi xed 
effect is a random effect, where a random set of some levels of the parameter 
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of interest is represented by the groups. If several doses were possible, but we 
just studied the lowest, middle, and highest, then this would be a random effect. 
Random effects will be discussed in Chapter 11.

We note also that this analysis can be used for only two groups in lieu of 
the t-test. That is because the F statistic with 1 degree of freedom in the num-
erator is the square of a t-statistic with the degrees of freedom equal to 
the degrees of freedom of the denominator of the F statistic. In this case, the F
statistic would be the square of the t-statistic, and the P value will be the same. 
This is why we recommend using ANOVA software to compute the BF test for 
2 groups.

Table 9
Log Testosterone Levels in 3 Groups of Subjects

Group 1 Group 2 Group 3

 6.44 6.17 6.46
 6.42 6.09 6.03
 6.30 6.16 5.25
 5.72 6.83 5.90
 6.20 6.00 3.84
 5.89 7.17 4.40
 6.59 6.41 6.35
 6.01 5.57 5.06
 5.87 5.66 5.91
 5.67 5.93 4.74
 5.88 6.27 5.31
 5.77 6.14 5.66
 5.34 6.84 4.93
 5.37 6.08 5.20
 6.82 6.83 5.78
 6.23 6.37 4.74
 6.22 7.05 6.42
 5.88 6.93 5.18
  5.64 5.25
  5.80
N 18 20 19
Mean 6.03 6.30 5.39
Std 0.40 0.49 0.71
SS 2.74 4.60 8.96
Median 5.95 6.17 5.25
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Example 2 (Continued)

In this example, the t-statistic comparing the amount of change in the uni-
polar and bipolar groups was 4.94, with 22 degrees of freedom. For ANOVA, 
the F statistic is 24.41 with 1 and 22 degrees for freedom, and the square root 
of 24.41 is 4.94.

Table 10
Absolute Deviation from the Median

Group 1 Group 2 Group 3

 0.49 0.00 1.20
 0.46 0.07 0.78
 0.35 0.00 0.00
 0.23 0.66 0.65
 0.25 0.17 1.42
 0.06 1.01 0.86
 0.64 0.25 1.09
 0.06 0.59 0.19
 0.08 0.50 0.65
 0.28 0.24 0.51
 0.07 0.10 0.06
 0.18 0.03 0.41
 0.61 0.68 0.33
 0.58 0.09 0.05
 0.87 0.66 0.53
 0.28 0.20 0.52
 0.27 0.89 1.16
 0.07 0.77 0.07
  0.53 0.01
  0.36
N 18 20 19
Mean 0.32 0.39 0.55
Std 0.24 0.33 0.44
SS 9.96 10.96 11.96

Table 11
Analysis of Variance Table for the Data in Table 9

Source Sum of squares d.f. Mean square F statistic

Between groups  8.40262  2 4.23131 13.92
Error 16.29622 54 0.30178
Total 24.59884 56
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Similarly, ANOVA can be expanded to test the effects of multiple factors and 
their interaction. It can also be used to test the effect of multiple related samples, 
such as measurements over time in the same individual, known as repeated 
measures. These topics will be discussed in Chapter 10 and Chapter 11.

5.2. Contrasts

The F statistic from the ANOVA can tell us whether or not there are differ-
ences between the means of the groups, but it cannot tell where those differ-
ences are. In order to do that, we must make additional comparisons of group 
means, or post hoc tests, keeping in mind the issues described in the beginning 
of this section. These comparisons may be simple pairwise comparisons of pairs 
of means or may be more complex. For example, in Example 6, we could 
compute the pairwise differences between group 1 and group 2, between group 
1 and group 3, and between group 2 and group 3 and test whether each is dif-
ferent from zero. We could also ask if the mean of group 1 is equal to the 
average of the means of group 2 and group 3. This would be stated as:

H or

H

0

1

: .

: .

µ µ µ µ µ µ

µ µ µ

1 2 3 1 2 3

1 2 3

1

2

1

2

1

2
0

1

2

1

2
0

= +( ) − − =

− − ≠

For testing, the null hypothesis is rewritten as a linear combination of the 
sample means

L x x x= − − =1 2 3
1

2

1

2
0.  (17)

An equation in this format is called a contrast. It has 2 characteristics:

 1. It is a linear combination of the group means with the right-hand side of the equa-
tion = 0; and

 2. The coeffi cients of the means always add up to 0.

In Equation 17, the coeffi cients of the means are, in order, 1, − 1
2  and − 1

2 ,
so it meets these requirements. Similarly a simple comparison of the fi rst 2 
groups would be written as

 L = x̄1 − x̄2 − 0  ⋅ x̄3 = 0. (18)

The coeffi cients for Equation 18 are, in order, 1, −1, and 0, which sum to zero. 
Note that zero is the coeffi cient for the term not in the comparison.

Post hoc tests may be a priori (comparisons that were planned before the 
ANOVA was performed) or a posteriori (run after the ANOVA is performed 
and run only if the F statistic from the ANOVA is signifi cant). These types of 
contrasts are tested using different methods.
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5.3. A Priori Comparisons

A priori contrasts may be tested using a t-test for a single group (Chapter
4, the comparison value is 0), with the following modifi cation to the estimate 
of standard error. The general form of the contrast for g groups with a sum of 
N total samples is

L c x ci i i= = =∑ ∑0 0, ,where  (19)

where the summation is over all g groups, the ci are the coeffi cients of the 
means, and some may be equal to 0.

The standard error for the contrast (SEC) is based on the MSE from the 
ANOVA

SEC MSE= ⎛
⎝⎜

⎞
⎠⎟∑ c

n
i

i

2

.  (20)

The test statistic is simply

t
L

N g= −
MSE

with degrees of freedom  (21)

where L is the value of the contrast at the sample means (Equation 19).
If more than one contrast is being computed, then the probability of a type 

I error is increased as described above, so that it is necessary to correct for 
this. One method, known as Dunnett’s multiple comparison procedure or the 
Bonferroni t method, computes a multiplier for the SEC, which is based on the 
overall type I error, the number of comparisons being made, and the degrees 
of freedom of MSE. The new critical level of the F statistic for each comparison 
is equal to this multiplier times SEC. The calculation of the multiplier is com-
plicated and is best done by computer software.

Example 6 (Continued)

Suppose we wanted to test the a priori hypothesis that the mean in the fi rst 
group was equal to the average of the means in the two other groups. The con-
trast is

L x x x= − +( ) =1 2 3
1

2
0.

The coeffi cients are 1, −, and −. The standard error (Equation 20) is

SEC = 0.3018
12

18

0 5

20

0 5

19
0 1566

2 2

+ − + −⎛
⎝⎜

⎞
⎠⎟ =. .

. .

The t-statistic (Equation 21) is
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t =
− +( )

=
6 0348 0 5 6 2165 5 3902

0 1566
1 2168

. . . .

.
. with 57 degrees of freeedom.

The P value for this t is 0.2265, so we can assume that the mean of the fi rst 
group is not different from the combined mean of the second and third groups.

5.4. A Posteriori Contrasts

A posteriori, or unplanned contrasts, are more common in research. As stated 
above, they are only computed if the F statistic for the overall ANOVA is sig-
nifi cant. The most common a posteriori comparisons are pairwise comparisons 
of means. Although a t-test with a denominator based on the MSE may seem 
to be appropriate, there is still the problem of multiple comparisons, lack of 
independence between tests (e.g., sharing of information), and the fact that they 
were unplanned. One approach is to simply divide the overall type I error by 
the number of tests performed. This is known as a Bonferroni correction and 
is the simplest way to correct for multiple tests. Unfortunately, the Bonferroni 
correction results in required signifi cance levels that are very small, which may 
drastically reduce the power of the study (see Chapter 19), and which does not 
take the other problems into account. Several better methods for multiple testing 
have been developed. The most common approach is to take advantage of the 
fact that there is overlap between tests (e.g., if x̄1 < x̄2 and x̄2 < x̄3, then x̄1 < x̄3)
and use this fact to develop new critical values, based on the sample size, 
number of tests, and SE. There are 4 tests that are most commonly used. The 
computation of the new critical values for signifi cance is complicated and will 
not be presented here.

 1. Tukey’s HSD (honest signifi cant difference) is used to test all pairwise compari-
sons. It is not used for other contrasts. It is also very useful because it gives con-
fi dence intervals for the pairwise differences and is thus very commonly used.

 2. The Newman-Keuls procedure, also known as the Student-Newman-Keuls (SNK) 
procedure, uses a stepwise approach to comparing means by fi rst ordering them 
by magnitude then using a critical value that is also based on the number of steps 
between means. It is more powerful than Tukey’s method but does not give con-
fi dence intervals, so it is not always useful.

 3. Scheffe’s procedure may be used to test contrasts other than pairwise comparisons. 
It is not as powerful as the others, so that it should not be used if only pairwise 
comparisons are required.

 4. Dunnett’s procedure is used when you want to compare one mean to all the others. 
Usually, the one mean is a control and the others are different levels of treatments, 
but this is not necessary. Dunnett’s test is not used for all pairwise comparisons, 
but it is more powerful than either of the others in this special situation.
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We are not going into more detail for these methods, because computing the 
critical values can be complicated, and we expect you will be doing this using 
computer software. Make sure your software will use the procedure you choose. 
Be aware that any of the fi rst three will automatically do all pairwise compari-
sons and that not all packages allow you to use Scheffe’s method to do other 
types of contrasts. Also, if you want to use Dunnett’s procedure, make sure you 
know how the package selects the control mean. Some packages automatically 
select a value such as the fi rst numeric or alphabetic level, others allow you to 
specify it.

Example 6 (Continued)

The F statistic for the overall ANOVA was signifi cant, so the SNK method 
was used to test for pairwise differences. The means (in order of magnitude) 
were 6.2965 for the second group, 6.0348 for the fi rst group, and 5.3902 for 
the third group. The SNK results showed that means in the fi rst and second 
groups were both signifi cantly larger than the mean in the third group.

6. Kruskal-Wallis Test
When the assumptions of normality and/or equal variance cannot be met 

even by transforming the data, then a nonparametric procedure known as the 
Kruskal-Wallis test may be used to compare central tendencies. This is an 
extension of the Wilcoxon-Mann-Whitney test of Section 4.3, and the process 
is similar. Assume we have g groups (g ≥ 3) with ni samples in each. We begin 
by computing the ranks for each value in the total sample, which we label rij.
Then we compute the sum of the ranks in each group, Si.

We then compute the sum of squares

ST S nj i i
2 2= ( )∑  (22)

and the Kruskal-Wallis statistic

K
ST

N N
N=

−( )
− +( )12

1
3 1

2

.  (23)

For small values of the ni, the critical values of K may be obtained from 
tables. For reasonably large ni, the distribution of K is approximately chi-square 
with g − 1 degrees of freedom. If there are more than a few ties, then the cal-
culations become more complicated. As with the nonparametric tests in Section
4, most software packages include this test and the appropriate P values.
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Example 7

Table 12 shows the mood scales after 30 days for the same men that were 
in Example 6 (8) and the ranks within the entire group for each sample. There 
are no ties. We wish to determine if there are differences in the distribution 
of scores between the 3 groups. The sum of ranks are 580, 481, and 592, 
respectively.

We compute

ST 2 580

18

481

20

592

19
48= + + = ,702.41

Table 12
Mood Scores in 3 Groups of Subjects and Overall Ranks

Group A Group B Group C

 Score Rank Score Rank Score Rank

 11.43  3  1.43  1  3.57  2
 21.19  6 16.96  4 17.14  5
 25.36 11 22.50  7 29.64 14
 28.21 13 23.93  8 31.85 16
 32.50 17 24.29  9 33.33 19
 33.93 21 25.00 10 33.93 20
 34.29 22 26.43 12 34.64 23
 34.64 24 30.36 15 35.13 26
 37.50 30 33.21 18 36.79 29
 40.36 35 35.00 25 37.92 31
 41.79 39 35.36 27 40.56 36
 42.86 43 35.71 28 40.96 37
 45.00 49 38.57 32 41.07 38
 45.30 50 38.75 33 41.94 41
 47.14 52 38.93 34 44.59 46
 47.50 54 41.89 40 44.84 48
 47.56 55 42.50 42 46.43 51
 47.86 56 43.57 44 47.14 53
   44.29 45 49.00 57
   44.64 47

ni  18  20  19
Si 580 481 592
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and

K = ×
×

− × =12 48
3 58 2 7783

,702.41

57 58
. .

The P value for K, based on a chi-square distribution with 2 degrees of 
freedom, is 0.2493, therefore we do not reject the hypothesis that the distribu-
tions of mood scores in the 3 groups are the same.

7. Sample Size Considerations
The concept of power and sample size is discussed in Chapter 19. For the 

t-test, the power increases as the assumed difference between the means 
increases and decreases as the standard error in the denominator increases. In 
the paired t-test, the standard deviation of the change is not the same as the 
standard deviation of either group and is usually smaller, so that using paired 
samples can result in a more powerful test. Similarly for the ANOVA, power 
increases as the difference between some or all of the means increases and 
decreases as the variance increases. Note that pre- or posttest comparisons 
usually have a smaller P value as the critical level, so that the power for these 
comparisons should be estimated independently of the power for the test, if 
they are critical.

There are some methods for estimating the power in the nonparametric tests, 
however they are more complex. In general, the larger the difference in medians 
that you can assume, the more powerful your test will be.

8. Conclusion
We have described and illustrated the use of the t-test and ANOVA for 

testing differences between means. Both of these tests are based on the assump-
tion that there is an underlying normal distribution in the groups. Further, the 
t-test for independent samples and the ANOVA require that the groups have 
equal variances. Methods to test this requirement and to obtain results when it 
is violated are described. In the case where the assumptions cannot be met, we 
have described tests from the class of tests known as nonparametric tests, which 
do not depend on any distribution assumptions. These tests are based on ranks 
and look for differences in the median rather than the mean. These tests are 
useful for the relatively simple problems addressed in the chapter but have not 
been fully developed for more complex studies.



142 Berman

References
1. Maas, J. W., Koslow, S., Davis, J. M., Katz, M. M., Mendels, J., Robins, E., Stokes, 

P. E., and Bowden, C. L. (1980) Biological component of the NIMH Clinical 
Research Branch Collaborative Program on the psychobiology of depression: I. 
Background and theoretical considerations. Psychol. Med. 10, 759–776.

2. Brown, M. B., and Forsythe, A. B. (1974) Robust tests for equality of variances. 
J. Am. Stat. Assoc. 69, 364–367.

3. Satterthwaite, F. W. (1946) An approximate distribution of estimates of variance 
components. Biometrics Bulletin 2, 110–114.

4. Sprent, P. (1989) Tables of critical values for nonparametric methods. In: Applied
Nonparametric Statistical Methods. New York, Chapman & Hall, pp. 231–241.

5. Box, G. P. E. (1954) Some theorems on quadratic forms applied in the study of 
analysis of variance problems. Ann. Math. Stat. 25, 290–302.

6. Welch, B. L. (1951) On the comparison of several mean values: An alternative 
approach. Biometrika 38, 330–336.

7. Swerdloff, R. S., Wang, C., Cunningham, G., Dobs, A., Iranmanesh, A., Matsumoto, 
A. M., Snyder, P. J., Weber, T., Longstreth, J., Berman, N., and the Testosterone 
Gel Study Group (2000) Long term pharmacokinetics of transdermal testosterone 
gel versus testosterone patch in hypogonadal men. JCEM 85, 4500–4510.

8. Wang, C., Swerdloff, R. S., Iranmanesh, A., Dobs, A., Snyder, P. J., Cunningham, 
G., Matsumoto, A. M., Weber, T., Berman, N., and the Testosterone Gel Study 
Group (2000) Transdermal testosterone gel improves sexual function, mood, muscle 
strength and body composition parameters in hypogonadal men. JCEM 85,
2839–2853.



143

From: Methods in Molecular Biology, vol. 404: Topics in Biostatistics
Edited by: W. T. Ambrosius © Humana Press Inc., Totowa, NJ

8

Correlation and Simple Linear Regression

Lynn E. Eberly

Summary
This chapter highlights important steps in using correlation and simple linear regression to 

address scientifi c questions about the association of two continuous variables with each other. 
These steps include estimation and inference, assessing model fi t, the connection between 
regression and ANOVA, and study design. Examples in microbiology are used throughout. This 
chapter provides a framework that is helpful in understanding more complex statistical tech-
niques. such as multiple linear regression, linear mixed effects models, logistic regression, and 
proportional hazards regression.

Key words: Coeffi cient of determination; diagnostics; extrapolating; homoscedastic; least 
squares; mean square error; outlier; Pearson correlation; power and sample size; Spearman cor-
relation; studentized residuals; Working-Hotelling confi dence band.

1. Introduction
A correlation is a numerical summary that describes the degree to which 

two continuous variables, X and Y, are linearly related to each other. A simple
linear regression of Y on X takes this one step further and formalizes a statisti-
cal model between the two variables. Statistical tests of the linear relation of Y
with X can then be carried out, and predictions of Y are based on the estimated 
linear relation. Regressions can be carried out using either experimental or 
nonexperimental (observational) data. In this chapter, we introduce the funda-
mentals of correlation and regression, including estimation and inference, 
assessing model fi t, the ANOVA-regression connection, and study design.

Example 1

A research team is interested in understanding transcription levels and sub-
sequent translation to a protein for a particular gene. mRNA expression and 
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protein expression are each measured relative to a control using melanoma 
samples from 100 patients. The team will explore how the two expression levels 
are related; see Figure 1.

2. Correlation
2.1. Pearson Product-Moment Correlation Coeffi cient

2.1.1. Estimation and Interpretation

A correlation r is a summary of the degree to which two continuous random 
variables, X and Y, are linearly related to each other. r can take on any value 
from −1 through 1 with 1 indicating a perfect positive correlation and 0 indicat-
ing no correlation between X and Y (Figs. 2a–2d). From a sample (x1, y1), (x2,
y2),  .  .  . , (xn, yn) of size n, this correlation can be estimated with the Pearson
product-moment correlation coeffi cient,
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Fig. 1. Protein (Y) versus mRNA (X) expression levels in melanoma samples from 
100 patients.
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X

Y

X

Y

c. Pearson correlation = 0.5

X

Y

d. Pearson correlation = 0.9

X

Y

e. Spearman correlation = 0.7

X

Y

f. Spearman correlation = 0.9

X

Y

a. Pearson correlation = –0.7 b. Pearson correlation = 0.0

Fig. 2. Examples of data with various strengths of correlation.
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Note that the correlation of X with Y is identical to that of Y with X. Here i
indexes the units of observation in the sample. When the (xi, yi) are jointly 
normally distributed, r̂ is a biased estimate of the population correlation between 
X and Y, but the bias decreases as n increases.

2.1.2. Inference

Scientifi c conclusions about the correlation are made with inferential tech-
niques such as hypothesis testing and confi dence intervals; see Chapter 4 for 
a review of these concepts. When the (xi, yi) are jointly normally distributed, 
or approximately so, a t-test for H0 : r = 0 is carried out using the test statistic
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We reject H0 in favor of H1 : r ≠ 0 when |t*| > t1−a / 2,n−2. An approximate 
(1 − a)100% confi dence interval is computed using a transformation
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because r̂ takes values in [−1, 1], r takes values in (−∞, ∞), thus allowing a 
better approximation to normality. A (1 − a)100% confi dence interval for r has 
lower and upper bounds
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From these we compute the lower and upper bounds of a confi dence interval 
for r,
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Both the test and confi dence interval are large sample approximations; a rule 
of thumb is to use these only when n > 30.

Example 1 (Continued)

The Pearson correlation between X = mRNA expression and Y = protein 
expression is 0.55. To test H0 : r = 0, t* = − − =0 55 100 2 1 0 55 6 522. . . .
Because |t*| = |6.52| > t1−0.05/2,100−2 = 1.98, we reject the null in favor of H1 : r ≠ 0 
at level a = 0.05 and conclude that the correlation is signifi cantly different from 
zero. To get a confi dence interval for r̂, we fi rst need r = +( ) −( )( ) =1

2 1 0 55 1 0 55ln . .
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0.62 and its confi dence interval 0 62 1 96 100 3 0 42 0 82. . ( . . )± − = , . Thus 
the 95% confi dence interval for r̂ is
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2.2. Spearman Rank Correlation Coeffi cient

If the relation between X and Y is not quite linear (e.g., quadratic, exponen-
tial), or if the (xi, yi) are not jointly normally distributed, then the Spearman
rank correlation coeffi cient may be a more appropriate summary of the strength 
of the relation (Figs. 2d–2e). This is computed with the same formula as above 
(Equation 1) but replacing each xi with its rank among x1,  .  .  .  , xn, and replac-
ing each yi with its rank among y1,  .  .  .  , yn. (That is, if the data are 10, 23, 13, 
and 9, they would be replaced by 2, 4, 3, and 1. The computation is more dif-
fi cult if there are ties, but this is the general idea.) The interpretation is thus 
slightly different than the Pearson correlation coeffi cient: The Spearman cor-
relation coeffi cient measures the tendency of Y to increase or decrease with X,
where that tendency is not constrained to a linear relation. The t-test and con-
fi dence intervals shown above can also be constructed similarly using the ranks 
instead of the original data.

3. Simple Linear Regression
3.1. The Linear Relation

A simple linear regression model expands upon the idea of correlation and 
formalizes a statistical relation between the two variables such that Y is linearly 
related to X. X is variously known as the covariate, or the predictor, explana-
tory, or independent variable. Correspondingly, Y is known as the outcome, or 
the predicted, response, or dependent variable. This is in contrast with a correla-
tion, which does not make this distinction between which variable is explana-
tory and which is outcome.

The fi rst step when considering a regression is to plot the data (x1, y1), (x2,
y2),  .  .  . , (xn, yn) as in Figure 1, with the xi on the horizontal axis and the yi on 
the vertical axis, to verify that there is an approximate linear relation between 
the two. This linearity is formalized in the mathematical relation Y = b0 + b1 X,
where b0 represents the intercept (the value of Y when X = 0) and b1 represents 
the slope (the magnitude of the change in Y when X is larger by one unit).

The purposes of a regression analysis are generally to estimate and test b0

and/or b1 and to form predictions for Y based on X. The general procedure for 
carrying out a regression analysis is as follows:

(i)  verify through a data plot that a linear relation is likely to be appropriate;
(ii)  estimate the linear relation with a regression model;
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(iii) assess through diagnostics whether the model provides an appropriate fi t to the 
data; and

(iv) if so, use the model to draw inferences about the linear relation.

Step (ii) through step (iv) will be outlined here and in Section 4 and 
Section 5.

3.2. Estimation of the Linear Relation

In a regression of Y on X using the sample (xi, yi) (i = 1, 2,  .  .  .  , n), the xi are 
assumed to be fi xed and known without error, whereas the yi are assumed to 
be random. These assumptions inform our procedure for estimating the linear 
relation (i.e., estimating the intercept b0 and slope β1). Examine Figure 3; a 
well-chosen estimated line should lie “close” to as many of the (xi, yi) as pos-
sible. Because the xi are considered fi xed, then for each xi “close” is taken to 
be the distance from each observed yi to the estimated line (i.e., the vertical 
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Fig. 3. Estimated line from the regression of Y on X.
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distance). We treat distance below the line equivalently to distance above the 
line by considering the squared distances. This is the least squares criterion:
we choose b0 and b1 to minimize the sum of squared vertical distances

( ( )) .y xi ii

n
− +

=∑ β β0 1
2

1

Mathematical solution of this criterion gives us the estimators
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 b̂0 = ȳ − b̂1 x̄ 

(2)

assuming a specifi c distribution, such as normality, for the yi is not required to 
do this estimation.

Example 1 (Continued)

From a regression of Y = protein expression on X = mRNA expression, our 
data result in b̂0 = 6.86 and b̂1 = 0.33. Thus, each 1 unit higher mRNA ex-
pression level is associated with a 0.33 unit higher mean protein expression 
level. The intercept is interpreted as mean protein expression when mRNA 
expression is 0, which is not a biologically useful value in this context.

3.3. The Simple Linear Regression Model

In order to proceed beyond estimation of intercept and slope, additional 
assumptions are required to turn our mathematical linear relation into a statis-
tical linear model:

(i)  the yi are independent of each other;
(ii)  the yi each follow a normal distribution;
(iii) the mean of that distribution is a linear function of xi; and
(iv) the variance of that distribution is the same for all yi (constant variance, or 

homoscedasticity).

We write this in one expression as

y N xi
indep

i~ ( )β β σ0 1
2+ ,

or equivalently as (3)

yi = b0 + b1 xi + ei

ε σi
indep N~ ( ).0 2,
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Techniques for verifying whether or not these model assumptions are met 
are discussed in Section 4. Under these assumptions, least squares estimation 
is equivalent to maximum likelihood estimation (see Chapter 11), and b̂0 and 
b̂1 are unbiased estimates of b0 and b1, respectively. Fitted values (or predicted 
values) for Y, denoted by ŷ, are estimates of the mean of Y for a given X and 
are computed using the estimated regression model

ŷ i = b̂0 + b̂1 xi;

these are shown as the solid line in Figure 3, drawn only for the available range 
of X values. Extrapolating beyond the range of the data is risky; the linear rela-
tion may no longer be valid. s 2 is estimated with the mean square error, also 
known as the residual mean square

ˆ ( ˆ )σ 2 2 2

1

1

2
≡ =

−
−

=∑s
n

y yi ii

n
 (4)

with corresponding degrees of freedom n − 2: from a sample of size n, two 
regression parameters b0 and b1 must be estimated.

3.4. Regression Through the Origin

Consider our study where X is a measure of transcription and Y is a measure 
of translation. This seems like a natural application for which regression through 
the origin could be used. In such a model, we force b0 = 0, which forces the 
mean translation level to be 0 when the transcription level is 0. However, 
regression through the origin is rarely applicable and should only be used when 
all of the following conditions are met: (i) it is biologically plausible for the 
mean of Y to be 0 when X is 0; (ii) there is strong evidence that the relation of 
Y with X is linear at the origin; and (iii) the sample of X values used in the 
study includes 0 (1). In our gene expression example, condition (i) is met but 
(ii) and (iii) are likely not.

4. Diagnostics: Assessing the Regression Model Fit
4.1. What to Assess

An important part of any statistical analysis is assessment of how well the 
chosen model fi ts the data. In regression, estimation of the linear slope (b̂1) is 
not suffi cient to understand whether a linear model is appropriate. Six aspects 
of the model should be assessed:

(i)  independence;
(ii)  normality;
(iii) linearity;
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(iv) constant variance;
(v)  presence of outliers; and
(vi) need for additional predictor variables.

Because the errors ei represent the difference between the observed data and 
the assumed model, we use residuals,

ei = yi − ŷ i,

the difference between the observed data and the estimated model, to assess 
model fi t. Figure 3 shows the residual e = 51.7 − 27.1 = 24.6 computed 
from the observed data point (x, y) = (61.2, 51.7) and the estimated model fi t 
(x, ŷ) = (61.2, 27.1) for that point. However, for diagnostics it is more useful 
to use a standardized version of the residuals, the studentized residuals
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The hi represent scaling factors, dependent on X, that are derived so that the ri

approximately follow N(0, 1). Your statistical package should compute them 
for you.

4.2. Tools Used to Assess Model Fit

4.2.1. Plot of Residuals versus X

A plot of ri versus xi (or ri vs. ŷ i) is used to assess constant variance, linear-
ity, and presence of outliers. If the assumptions of constant variance and lin-
earity are satisfi ed, then this plot will show a random-like scatter of points 
approximately equally spread above and below the horizontal at 0; an example 
is shown in Figure 4a.

A common sign of nonconstant variance is a plot that shows a cone-shaped 
scatter of points, typically exhibiting increasing variance with the mouth of the 
cone at the larger values of X, as shown in Figure 4b. When the sample size 
is small, plotting |ri| versus xi instead of ri versus xi can better highlight such a 
pattern.

A common sign of nonlinearity is a curvilinear or other systematic pattern 
in the points, indicating that there is a pattern in the residuals that is still related 
to X, even after the linear trend has been accounted for by the model, as shown 
in Figure 4c. Thus, the relation of Y to X is not appropriately represented by a 
line.

Outliers can result from an outlying X value, an outlying Y value, or both; 
see Figure 4d, where two Y-outliers are marked with arrows. Identifying 
outliers is important because outlying observations can “pull” the regression 
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line toward them, thus infl uencing the estimation. Potential outliers should 
always fi rst be checked for data entry or calculation errors or for equipment, 
technician, or other experimental condition errors. Data found to be erroneous 
should be corrected (if possible) or omitted from the analysis. Any remaining 
outliers may be informative in that they could represent an important way in 
which the data violate the model. Only approximately 5% of the ri should be 
outside of ±2 and only approximately 0.1% should be outside ±3. Other mea-
sures for outliers are leverage and infl uence; see Chapter 9. If an outlier is 
found, a type of sensitivity analysis could be done: the outlier could be deleted, 
the analysis redone, and the results compared with the results obtained when 

a. No violations b. Non-constant variance

c. Non-linearity d. Potential outliers

S
tu

de
nt

iz
ed

 r
es

id
ua

ls
 r

i

S
tu

de
nt

iz
ed

 r
es

id
ua

ls
 r

i

S
tu

de
nt

iz
ed

 r
es

id
ua

ls
 r

i

S
tu

de
nt

iz
ed

 r
es

id
ua

ls
 r

i
X X

X X

Fig. 4. Examples of residuals exhibiting various violations of model assumptions.
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including the outlier. If the two sets of results are not substantially different, 
the outlier is not of concern and does not need to be deleted. If the results are
substantially different, the research team should consider possible scientifi c 
explanations for having obtained such an observation; both sets of results could 
then be reported.

Example 1 (Continued)

For the gene expression data, Figure 5a shows a typical cone-shaped pattern 
indicative of a variance that increases with X. Linearity cannot be assessed from 
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this plot until the constant variance assumption is satisfi ed. There is one poten-
tial outlier in these data with studentized residual value 4.44 from data point 
(x, y) = (52.7, 60.7). However, there is no reason to believe this is an incorrect 
observation, and it may become less of an outlier if we are able to correct the 
nonconstant variance; we will not delete it.

4.2.2. Summary Plots of Residuals

Summary plots of the ri are used for assessing normality and independence. 
Stem-and-leaf plots, box-and-whisker plots, and histograms are all useful tools 
for summarizing the distribution of the ri. Are the ri symmetrically distributed 
around 0? Is their distribution approximately bell-shaped, like the normal dis-
tribution? A normal quantile (or probability) plot of the ri also indicates whether 
the residuals fall close to normality, and, if not, whether they are left- or right-
skewed or heavy- or light-tailed (see Chapter 3). Normality is diffi cult to assess 
and as a rule of thumb requires n > 30.

Example 1 (Continued)

Figure 5b and Figure 5c show two summary plots of the ri. The histogram 
indicates that the studentized residuals are approximately symmetric around 0, 
but the normal quantile plot indicates that they are slightly heavy-tailed in both 
the left and right tails.

Independence can be assessed if the sequence across time (or space) in which 
the data were collected is known. If so, then a sequence plot of the ri versus 
sequence number can indicate any pattern in the residuals across the sequence. 
Presence of a pattern (e.g., increasing, oscillating, or curvilinear trend) indicates 
that the conditions under which the data were collected changed systematically, 
leading to nonindependent observations. No pattern (a random scatter of points) 
indicates that independence is likely. Lack of independence can also be inferred 
under certain sampling schemes. For example, if 5 mice from each of 10 litters 
are used in a study, then likely the measurements taken on mice within the same 
litter are correlated. Special models are needed for such data; see Chapter 11.

4.2.3. Plot of Residuals versus Additional Predictor Variables

Oftentimes, additional information on each unit of observation is collected 
during the course of a study. A pattern in the plot of ri versus such an additional 
variable (denote it by Xnew) indicates that the variable has an important relation 
with the response, above and beyond the relation of Y with X. In this case, 
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multiple linear regression should be considered to regress Y on both X and Xnew

simultaneously; see Chapter 9.

Example 1 (Continued)

Figure 5d shows a plot of the ri versus an additional available predictor, the 
ages of the 100 melanoma patients. Because there is no pattern in this plot, 
age does not have a strong relation with Y above and beyond the relation of 
X with Y.

4.3. When Assessments Show a Problem

Nonconstant variance and nonnormality in Y often appear together. In such 
situations, fi rst assess for nonlinearity and nonconstant variance, and then, once 
these are satisfi ed, reassess whether the normality assumption is violated. 
Checks for outliers and the need for additional predictor variables should be 
left for last, after any other violations have been corrected.

A nonlinear relation between Y and X can sometimes be transformed to lin-
earity with either a transformation of Y or X or both. For example, if Y increases 
approximately exponentially with X, then regress Y on eX or regress ln(Y) on X.
If Y increases approximately with ln(X), then regress Y on ln(X) or regress eY

on X. In some fi elds, it is preferable to try transforming X fi rst, whereas in others 
it is preferable to try transforming Y fi rst. If Y increases in a quadratic (or other 
smooth nonlinear) relation with X, then polynomial regression, a type of mul-
tiple linear regression, is needed; see Chapter 9.

Nonconstant variance and nonnormality can also often be corrected with 
transformations of Y. For example, in exposure or other laboratory studies, it 
is common to take ln(Y) as the outcome to correct for skewness in the distribu-
tion of Y. Another common transformation is Y . Whenever any transforma-
tion of Y is used, the transformed Y and its estimated line are used for all 
diagnostics and inference (covered in Section 5).

Example 1 (Continued)

Figure 1 shows that both X and Y have skewed distributions, with observa-
tions tending to fall more toward the lower ends of their ranges. This can often 
be corrected with a log transformation (log2, log10, or ln). We next fi t a regres-
sion of ln(Y) on ln(X). The data with fi tted line are shown in Figure 6, and 
diagnostic plots are shown in Figure 7. The plot of ri versus xi now shows a 
random-like scatter of points around the horizontal at 0, indicating no violations 
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of linearity or constant variance. There is only one outlying observation, with 
a studentized residual of −3.53; this is not unusually large, and there is no reason 
to eliminate it from the analysis. The histogram and normal quantile plot indi-
cate the studentized residuals now approximately follow a normal distribution. 
There is again no strong relation of the studentized residuals with patient 
age. Because all model assumptions appear to be satisfi ed, we can proceed with 
model inference.

Any type of logarithmic transformation, for example, cannot be used directly 
on data with negative or zero values. In such cases, it is common to add a small 
number to every observation before transforming. After model estimation, it is 
good practice to verify that one’s results are not sensitive to one’s choice of 
that small number by repeating the model estimation with two or three other 
choices of small number.
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Fig. 6. Estimated line from the regression of ln(Y) on ln(X).
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5. Inferences from the Regression Model
5.1. Inferences About the Estimated Linear Relation

Once a model has been determined to provide an appropriate fi t to the data, 
we can draw scientifi c conclusions from the analysis using hypothesis tests 
and confi dence intervals. Both of these require standard errors for our estimates 
b̂0 and b̂1,
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Fig. 7. Diagnostic plots from the regression of ln(Y) on ln(X)
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using s2 as defi ned in Equation 4. The (1 − a)100% confi dence intervals for 
the intercept and slope are computed as

b̂0 ± t1−a / 2,n−2 s.e.[b̂0]

b̂1 ± t1−a / 2,n−2 s.e.[b̂1],

again with n − 2 degrees of freedom. A hypothesis test for the intercept is con-
structed from the test statistic

t*
s e

=
ˆ

. .[ ˆ ]
.

β
β
0

0

The null hypothesis H0 : b0 = 0 is rejected at level a in favor of H1 : b0 ≠ 0 
when

|t*| > t1−a / 2,n−2.

A test is similarly constructed for the slope from the test statistic

t*
s e

=
ˆ

. .[ ˆ ]
.

β
β
1

1

 (7)

The null hypothesis H0 : b1 = 0 is rejected at level a in favor of H1 : b1 ≠ 0 
when

|t*| > t1−a / 2,n−2.

One-sided tests and intervals can also be constructed; see Chapter 4. Rejection 
of H0 : b1 = 0 indicates that there is a signifi cant linear slope of Y on X, but it 
does not indicate that a linear relation is the most appropriate relation; diagnos-
tics are needed to assess the adequacy of the linear assumption. In addition, in 
studies where the values of X are not randomly assigned to the units of observa-
tion, rejection of H0 : b1 = 0 does not indicate that a change in X causes a change 
in Y; we can only infer association, not causation. Kleinbaum and others (2)
have a summary of the type and weight of evidence required to reasonably infer 
causation from observational studies.
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Example 1 (Continued)

From our regression of ln(Y) on ln(X), we get b̂0 = 0.68 (s.e.[b̂0] = 0.27), b̂1

= 0.61 (s.e.[b̂1] = 0.09), and s2 = 0.28. b̂0 now estimates the mean of ln(Y) when 
ln(X) = 0 (i.e., when X = 1). b̂1 represents the mean change in ln(Y) when ln(X)
is higher by 1 unit; for every 1 unit higher ln mRNA expression level, the model 
estimates on average a 0.61 unit higher ln protein expression level. Because |t*|
= |0.61/0.09| = 6.78 > t0.975,98 = 1.98, we reject H0 : b1 = 0 in favor of H1 : b1 ≠ 0 
at level a = 0.05 and conclude that there is a signifi cant linear relation between 
ln(Y) and ln(X). A 95% confi dence interval for b1 is 0.61 ± (1.98)(0.09) = (0.43,
0.79). This interval does not span 0, another indication that H0 is rejected at 
level a = 0.05.

5.2. Inferences About Y

The mean of the distribution of Y , for any value of X = x*, is estimated with 
the fi tted value computed at that x*,

ŷ = b̂0 + b̂1x*,

which has standard error
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The standard error increases the farther x* is from x̄. A(1 − a)100% confi dence 
interval is computed as ŷ ± t1−a / 2,n−2 s.e.[ŷ].
This interval has appropriate type I error rate only when it is constructed for a 
single x* value. When confi dence intervals are constructed simultaneously for 
all X values within the range of the data, we need a confi dence band for the 
entire regression line

ˆ ( ) . .[ ˆ].y F yn± − −2 1 2 2α , , s e

This is the Working-Hotelling 1 − a confi dence band, and at each x* it is wider 
than the corresponding confi dence interval at x*.

Interest may lie also in predicting a single value for Y for the given x*, rather 
than estimating the mean of Y for the given x*. The fi tted value ŷ above is also 
used for such a prediction, but we will denote it by ŷnew = b̂0 + b̂1x* to distin-
guish our intentions. It then has a larger standard error
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because it must account for both the variability within the distribution for Y
and the variability in estimating the mean of that distribution. A confi dence 
interval is constructed as above. Estimation of the mean and prediction of a 
single value should be restricted to x* values within the range of the original 
sample of xi.

When the regression is carried out on a transformed outcome (such as ln 
protein expression in our example), then fi tted values, and their confi dence 
intervals or prediction intervals, can be back-transformed to the original scale 
as long as the transformation is a monotone function. Standard errors should 
not be back-transformed; for example, exponentiating the standard error of a 
fi tted ln protein expression level does not accurately represent the standard error 
of the untransformed protein expression level.

Example 1 (Continued)

For an mRNA expression level of 7.0, ln(x*) = ln(7.0) = 1.95, and the cor-
responding estimated mean ln protein expression level is b̂0 + b̂11.95 = 0.68 +
(0.61)(1.95) = 1.87 and has standard error 0.11 (Equation 8). A 95% confi -
dence interval for the mean ln protein expression level is thus 1.87 ± (1.98)(0.11) 
= (1.65,2.09). With a prediction standard error of 0.54 (Equation 9), a 95% 
prediction interval for a new single ln protein expression level is 1.87 ±
(1.98)(0.54) = (0.80,2.94). Back-transforming, a 95% confi dence interval for 
the mean protein expression level is (e1.65,e2.09) = (5.21,8.08) and a 95% pre-
diction interval for a new single protein expression level is (e0.80,e2.94) =
(2.23,18.92).

5.3. Effect of Departures from Normality

When the assumption of normality for Y is violated, the tests and confi dence 
intervals shown above for b̂0, b̂1, and ŷ will still be approximately correct, 
because b̂0 and b̂1 have asymptotic normal distributions even when Y does not. 
The approximation will improve as the sample size n increases. In contrast, 
confi dence and prediction intervals for ŷnew are sensitive to the violation of 
normality.

6. ANOVA Tables for Regression
An analysis of variance (ANOVA; see Chapter 7) table is constructed by 

partitioning the total variation in Y into variation due to two pieces: model 
variation (based on the available predictors) and error (residual) variation. This 
partitioning is represented as yi − ȳ = (ŷ i − ȳ) + (yi − ŷ i) (total = model + error). 
This table can be constructed for any regression model (but is still called an 
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ANOVA table) with the ŷ i estimated by the regression model and the degrees 
of freedom computed from the number of regression parameters in the model 
(Table 1).

The F-test is a test of the slope, so we reject H0 : b1 = 0 at level a in favor 
of H1 : b1 ≠ 0 when F* > F1−a,1,n−2; this test statistic is the square of the t-test
statistic seen in Equation 7, so the two tests are equivalent. The ANOVA table 
does not provide an F-test of H0 : b0 = 0.

The quantity R2 = SS(Model)/SS(Total) is called the coeffi cient of determina-
tion and takes values from 0 through 1. R2 gives the proportion of SS(Total) 
due to the regression on X. A large R2 thus indicates that the estimated linear 
relation will provide good predictions for Y, but R2 is not suffi cient to assess 
model fi t.

Example 1 (Continued)

For our regression of ln protein expression on ln mRNA expression, the 
ANOVA table is shown in Table 2. The R2 of 13.52/40.72 = 0.33 indicates that 
only about a third of the total variability in ln protein expression levels is 
explained by its relation with ln mRNA expression levels. Relatively low R2

such as this are common in human biology studies.

Table 1
ANOVA Table for Simple Linear Regression

Source Sum of squares (SS) Degrees of freedom Mean squares (MS) F*

Model i iy yˆ −( )∑ 2
 1 i iy yˆ −( )∑ 2 MS Model

MS Error

( )
( )

Error i i iy y−( )∑ ˆ
2

n − 2 i i iy y

n

−

−

( )∑ ˆ
2

2

Total i iy y−( )∑ 2
n − 1

Table 2
ANOVA Table for the Gene Expression Data

Source Sum of squares (SS) Degrees of freedom Mean squares (MS) F*

Model 13.52  1 13.52 13.52/0.28 = 48.29
Error 27.20 98  0.28
Total 40.72 99
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7. Study Design for Simple Linear Regression
The following decisions need to be made in order to design a study that will 

use simple linear regression as the primary analysis:

(i)  which X values to use and how to space them; and
(ii)  how many observations to collect.

When a linear relation between Y and X is appropriate for all X values being 
considered, a wider range in X values leads to a larger value for ( )x xii

−∑ 2

and hence smaller standard errors for b̂0 and b̂1 (Equation 6). Thus, power to 
detect a signifi cant intercept or a signifi cant slope can be increased with widely 
spaced X values. Note that in some studies, it may not be possible to choose 
either the X values or their spacing.

In most cases, the estimated slope is of primary interest. How many X values 
to use is then determined by the researcher’s prior knowledge of the relation 
and by the purpose of the study. If the researcher is confi dent that the relation 
is linear, then a minimum of two X values are needed to estimate the slope. If 
the purpose is to determine whether a linear relation is appropriate, then a 
minimum of three X values are needed. See Ryan (1) for a more detailed discus-
sion of designs for regression studies.

In general, observations collected should be equally divided among the 
chosen X values. How many observations to collect in total (n) can be computed 
for a specifi ed slope estimate, standard error, type I error probability a, and 
power using the following equation:
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See Chapter 19 for an in-depth treatment of power and sample size 
computation.

Example 2

Consider a study that will regress Y on X where the researchers would like 
to be able to detect a slope of b1 = 0.5 or larger with power of at least 0.90. 
From a pilot study, they have estimated s.e.[b̂1] to be approximately 0.15. When 
the new study is complete, they will use a simple linear regression t-test (Equa-
tion 7) with type I error rate of 0.05. How many observations do they need? 
First try n = 37, and we compute
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which is not quite 0.90; n = 38 results in a power of 0.8999, and n = 39 results 
in
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thus the researchers need n = 39 observations in their sample to achieve a power 
of at least 0.90.

8. Discussion
This chapter has provided an overview of simple linear regression concepts. 

A more thorough coverage is available in many books. In particular, see Neter 
and others (3) for more details on expected mean squares, tests for outliers, 
tests for randomness, tests for constant variance, an F-test for lack of fi t to the 
linear relation, correlation models (models where it is not necessary to designate 
one variable as outcome and the other as predictor), and extensively worked 
examples and case studies.

Ryan (1) covers in addition more advanced topics on regression, including 
regression through the origin, weighted least squares, and alternative regression 
techniques for when the model assumptions are violated. In particular, Ryan 
(1) covers ridge, robust, and nonparametric regression techniques for when 
the normality assumption is violated (e.g., when many sample points appear 
to be outliers) and splines and nonlinear regression for when the linearity 
assumption is violated.

Vittinghoff and others (4) cover regression as well as several extensions, 
including approaches for censored outcomes, for probability-weighted out-
comes, and for nonnormal outcomes such as binary (logistic regression) and 
count (Poisson regression). Harrell (5) also describes approaches for censored 
outcomes and for ordinal outcomes. Censoring is common in laboratory studies, 
where equipment can only determine a measure above a certain value (lower 
limit of detection) or below a certain value (upper limit of detection), and in 
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survival and time-to-event studies, where some study participants survive 
beyond the study’s end. Not accounting for censoring can lead to biased esti-
mates of model parameters.

Mickey and others (6) cover the sampling of X values and random X models 
(correlation models) for when the X values are not assumed fi xed and known. 
They also discuss the consequences of measurement error in X, which can also 
lead to biased estimates of model parameters.

Kleinbaum and others (2) discuss inferring causation in observational studies. 
Vittinghoff and others (4) discuss confounding, causal effects, and counterfac-
tual experiments. All of these techniques assume the sample consists of inde-
pendently collected observations. When this assumption is violated, other types 
of regression models are needed (see Chapter 11).
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Multiple Linear Regression

Lynn E. Eberly

Summary
This chapter describes multiple linear regression, a statistical approach used to describe the 

simultaneous associations of several variables with one continuous outcome. Important steps in 
using this approach include estimation and inference, variable selection in model building, and 
assessing model fi t. The special cases of regression with interactions among the variables, 
polynomial regression, regressions with categorical (grouping) variables, and separate slopes 
models are also covered. Examples in microbiology are used throughout.

Key Words: Adjusted R-square; Bonferroni correction; coeffi cient of multiple determination; 
collinearity; dummy variable; indicator variable; infl uence; interaction; leverage; parallel lines 
model; partial coeffi cients; partial sums of squares; polynomial; separate slopes model; sequential 
sums of squares; stepwise selection; variable selection.

1. Introduction
Oftentimes, several pieces of information on each unit of observation are 

collected during the course of a study, and interest lies in simultaneously exam-
ining the associations of these predictor variables with the outcome. In this 
chapter, we examine multiple linear regression estimation, inference, model 
building, and assessment. We will examine several special cases of this model, 
including polynomials, interactions, and categorical predictor variables. This 
chapter assumes the reader is familiar with the terminology and concepts in 
Chapter 7 and Chapter 8.

Example 1

The level of natural killer cell production in a cancer patient may be related 
to the expression levels of certain genes. A research team measures the mRNA 



166 Eberly

10 15 20 25 30 35 40

15
20

25
30

35
40

45
50

X1= Gene 1 expression level

Y
 =

 N
at

ur
al

 k
ill

er
 c

el
l l

ev
el

a. yi vs. xi1

3.5 4.0 4.5 5.0

15
20

25
30

35
40

45
50

X2= Gene 2 expression level

Y
 =

 N
at

ur
al

 k
ill

er
 c

el
l l

ev
el

b. yi vs. xi2

1.50 1.55 1.60 1.65 1.70 1.75

15
20

25
30

35
40

45
50

X3= Gene 3 expression level

Y
 =

 N
at

ur
al

 k
ill

er
 c

el
l l

ev
el

c. yi vs. xi3

10 15 20 25 30 35 40

3.
5

4.
0

4.
5

5.
0

X1= Gene 1 expression level
X

2=
 G

en
e 

2 
ex

pr
es

si
on

 le
ve

l

d. xi2 vs. xi1

10 15 20 25 30 35 40

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

X1= Gene 1 expression level

X
3=

 G
en

e 
3 

ex
pr

es
si

on
 le

ve
l

e. xi3 vs. xi1

3.5 4.0 4.5 5.0

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

X2= Gene 2 expression level

X
3=

 G
en

e 
3 

ex
pr

es
si

on
 le

ve
l

f. xi3 vs. xi2

Fig. 1. Natural killer cell levels and gene expression levels for three genes.
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expression levels relative to a control for three different genes in tumor samples 
and the natural killer cell levels in serum samples from 86 people with lung 
cancer; see Figure 1.

2. Regression with Multiple Explanatory Variables
2.1. Multiple Linear Regression Model

A multiple linear regression model is an extension of the simple linear 
regression model for data with multiple predictor variables and one outcome 
(xi1, xi2,  .  .  .  , xi,p−1, yi) for i = 1, 2,  .  .  .  , n units of observation. It formalizes a 
simultaneous statistical relation between the single continuous outcome Y and 
the predictor variables Xk (k = 1, 2,  .  .  .  , p − 1):

yi = b0 + b1xi1 + b2xi2 +  .  .  . + bp−1xi,p−1 + ei

 ei
in∼dep N(0, s 2) (1)

where b0 represents the intercept (the mean of Y when all Xk = 0), and each bk

represents a slope with respect to Xk (the magnitude of change in the mean of 
Y when Xk is larger by one unit and all other predictors are held constant). The 
bk are thus sometimes called partial regression coeffi cients. As for simple linear 
regression, this model can be equivalently written as

yi
in∼dep N(b0 + b1xi1 + b2xi2 +  .  .  . + bp−1xi,p−1,s 2).

The assumptions are thus the same as for simple linear regression:

(i) the yi are independent of each other;
(ii) the yi each follow a normal distribution;
(iii) the mean of that distribution is a linear function of each xik; and
(iv) the variance of that distribution is the same for all yi (constant variance, or 

homoscedasticity).

The general procedure for carrying out a regression analysis is as follows:

(i) for each predictor, verify through a data plot that a linear relation is likely to be 
appropriate;

(ii) estimate the linear regression model;
(iii) assess through diagnostics whether the model provides an appropriate fi t to the 

data;
(iv) if so, use the model to draw inferences about the regression coeffi cients;
(v) reduce the model by removing nonsignifi cant predictors, if appropriate for the 

study goals; and
(vi) reassess through diagnostics whether the model provides an appropriate fi t to the 

data.
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Step (ii) through step (vi) will be outlined here and in Section 3.
As for simple linear regression, estimation of this model is done with the 

least squares criterion: we choose the bk to minimize the sum of squared vertical 
distances between the observed yi and the fi tted model:

( ( . . . )) .y x x xi i i p i pi

n
− + + + + − −=∑ β β β β0 1 1 1 1

2

1 2 2 ,

Assuming a specifi c distribution, such as normality, for the yi is not required 
to do this estimation but is required for any statistical inference.

2.2. Inference

The formulas for the estimated regression parameters bk and their standard 
errors are not easily expressed; your statistical software will print the estimates 
out for you. For details, see Neter and others (1). Standard errors depend on s2,
the mean square error,

s
n p

y yi i

i

n
2 2

1

1
=

−
−( )

=
∑ ˆ ,

with n − p degrees of freedom because of the p regression coeffi cients being 
estimated. The fi tted values ŷ i are computed from the estimated model:

ŷ i = b̂0 + b̂1xi1 + b̂2xi2 +  .  .  . + b̂p−1xi,p−1.

A (1 − a)100% confi dence interval for each coeffi cient bk is

b̂k ± t1−a /2,n−p s.e.[b̂k]

and a test of H0  : bk = 0 is constructed from the test statistic

t k

k

*
s e

=
ˆ

. .[ ˆ ]
.

β
β

 (2)

We reject H0 at level a in favor of H1  : bk ≠ 0 when

|t*| > t1−a /2,n−p.

One-sided tests and intervals can also be constructed; see Chapter 4. These 
tests and intervals do not have the appropriate type I error rate when they are 
constructed for each of several coeffi cients. For simultaneous intervals (or tests) 
of several coeffi cients, replace t1−a/2,n−p with a Bonferroni corrected quantile, 
t1−a/(2s),n−p, for example where s is the number of coeffi cients for which inter-
vals or tests are needed. See Chapter 4 and Chapter 7 for an introduction 
to and other uses for the Bonferroni correction.
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As for simple linear regression, rejection of this hypothesis indicates that 
there is a signifi cant linear trend present between the predictor being tested and 
the outcome; it does not indicate whether the linear assumption is appropriate 
or whether the model fi ts the data well. In addition, in observational studies, it 
does not indicate that changes in the predictor cause changes in Y; see also 
Chapter 8, Section 5.1.

Example 1 (Continued)

Gene 1 has the most signifi cant association with natural killer cell levels, 
with regression coeffi cient b̂1 = 0.73, standard error 0.06, and test statistic t* =
|0.73/0.06| = 12.17. We reject H0  : b1 = 0 at level 0.05 because |t*| > t0.975,82 =
1.99 and conclude that mean natural killer cells are 0.73 units higher for each 
1 unit higher gene 1 expression level. Gene 2 and gene 3 expressions do not 
show signifi cant associations with natural killer cell levels at level 0.05. We fail 
to reject H0  : b2 = 0 because t* = |0.42/1.41| = 0.30 < 1.99. We also fail to reject 
H0  : b3 = 0 at level 0.05 because t* = |−4.81/6.80| = 0.71 < 1.99. A Bonferroni 
correction of these three tests would compare each t* to t1−0.05/(2∗3),82 = t0.992,82 =
2.44, and our conclusions would not change. The intercept is interpreted as the 
mean level of natural killer cells when all three gene expression levels are 0 
and is not a biologically useful value in this context.

A (1 − a)100% confi dence interval for the estimated mean of Y at the specifi ed 
values x* = (x*1 , x*2,  .  .  .  , x*p−1) using ŷ = b̂0 + b̂1x*1 + b̂2x*2 +  .  .  . + b̂p−1 x*p−1 is

ŷ ± t1−a /2,n−p s.e.[ ŷ].

A (1 −a)100% confi dence interval for a single predicted value of Y at x* (denote 
it ŷnew = b̂0 + b̂1x*1 + b̂2x*2 +  .  .  . + b̂p−1x*p−1) is ŷnew ± t1−a/2,n−p s.e.[ ŷnew]; this is 
often called a prediction interval. Your statistical software will compute both 
these types of intervals for you. Only use x* that fall within the range of the 
observed data.

Example 1 (Continued)

A 95% confi dence interval for the mean natural killer cell level at gene 
expression levels x* = (13.2, 4.5, 1.7) (for genes 1, 2, and 3, respectively) is 
(23.08, 25.37), while a 95% prediction interval is (16.92,31.53). Note that 
neither a confi dence interval nor a prediction interval for x* = (10, 10, 10) would 
be appropriate because this value is not within the range of the observed data. 
Less obviously, x* = (10, 5, 1.5) is also not within the range of the data; the 
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data do have observed gene 2 values of 5 and observed gene 3 values of 1.5, 
but such small gene 3 values do not occur with such large gene 2 values; see 
Figures 1d–1f.

2.3. Overall ANOVA Table

An ANOVA table with sums of squares, degrees of freedom, and F-test can 
be constructed as for simple linear regression. It shows how the total sum of 
squares is partitioned into the model and the error sums of squares (Table 1).
With p − 1 predictors, we have p − 1 degrees of freedom for the model and 
n − p degrees of freedom for the error. The F-test is a test of the null hypothesis 
H0  : b1 = b2 =  .  .  . = bp−1 = 0. We reject H0 at level a when F* = MS(Model)/
MS(Error) > F1−a,p−1,n−p. This is a simultaneous test of all predictors, hence, 
unlike simple linear regression, there is no one t-test to which it is 
equivalent.

R2 = SS(Model)/SS(Total) is now called the coeffi cient of multiple determina-
tion and measures the proportion of total variation in Y that is associated with 
the p − 1 predictors. R2 takes values from 0 through 1; R2 = 0 when all b̂1,
b̂2,  .  .  .  , b̂p−1 are 0, and R2 = 1 when the model fi ts the data perfectly (i.e., 
yi = ŷ i for all i).

SS(Total) is the same no matter which model is fi t; it depends on only the 
observed Y values. When a new model is fi t, then, it is the partitioning of 
SS(Total) into SS(Model) and SS(Error) that changes. As an additional predic-
tor is added to a model, more of SS(Total) will be “explained” by the model, 
leading to an increase in SS(Model) and a corresponding decrease in SS(Error). 
Because SS(Model) increases, R2 increases, but only by small amounts for 
nonsignifi cant predictors. This means that a higher R2 does not necessarily mean 
a better model. For this reason, we often instead consider the adjusted R2, which 

Table 1
Overall ANOVA Table for Multiple Linear Regression

 Sum of squares  Mean squares
Source (SS) Degrees of freedom (MS) F*

Model ( )y yii
ˆ −∑ 2

p − 1 ( )y yii
ˆ −∑ 2 MS(Model)

MS Error( )
Error ( )y yi ii

−∑ ˆ 2
n − p ( )y y

n p

i ii
−

−
∑ ˆ 2

Total ( )y yii
−∑ 2

n − 1
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is computed using mean squares instead of sums of squares so that degrees of 
freedom (and hence number of predictors) are taken into account: R2

a = 1 −
MS(Error)/MS(Total). This in effect penalizes the R2 value for models that 
include nonsignifi cant predictors.

2.4. Partitioning the ANOVA Table by Predictor

A sum of squares can be computed for each predictor separately as the 
increase in SS(Model) [or equivalently the decrease in SS(Error)] when that 
predictor is added to a model. This means that the order in which predictors 
are added to a model will change the computation. Sequential sums of squares
are computed after adding each predictor to the model one at a time in a 
sequence; thus the sequential sum of squares for a predictor is “adjusted” for 
all predictors earlier in the sequence but not for those predictors later in the 
sequence. For example, with three predictors, we compute the sum of squares 
for X1 [denote it by SS(X1)], then the sum of squares for X2 after adjusting for 
X1 [SS(X2|X1)], and fi nally the sum of squares for X3 after adjusting for both X1

and X2 [SS(X3|X1, X2)]. For any model being considered, sequential sums of 
squares add up across the included predictors to equal the model sum of squares. 
In this example, SS(Model) = SS(X1) + SS(X2|X1) + SS(X3|X1, X2). Thus, the 
sequential sums of squares represent a partitioning of SS(Model) into p − 1 
components, one for each predictor.

Partial sums of squares in contrast are computed by considering each predic-
tor to be the last one in the sequence, thus they are “adjusted” for all other 
predictors in the model. For our example, we compute SS(X1|X2, X3), SS(X2|X1,
X3), and SS(X3|X1, X2). If predictors are uncorrelated with each other, then for 
each predictor its partial and sequential sums of squares will be identical. Your 
statistical software will compute these sums of squares for you, and the docu-
mentation should make clear which types of sums of squares are printed in your 
output tables. Chapter 10 covers these concepts in more detail.

The t-test of H0  : bk = 0 in Equation 2 has an equivalent F-test using the 
partial sum of squares

F
X X X X Xk k k p

*
SS , , , , ,

MS Error
= − + −( . . . . . . )

( )
1 1 1 1

where we reject H0 at level a in favor of H1 : bk ≠ 0 when F* > F1−a,1,n−p. Several 
bk can be tested simultaneously with a general linear F-test; see Chapter 10.
Your statistical package will likely present both the sequential and partial F-
tests in the output; your documentation should explain their presentation. Your 
specifi c scientifi c hypothesis can dictate whether the partial or sequential F-test
is appropriate: should the test for the predictor of interest be adjusted for the 
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associations of the other predictors in the model (partial) or not (sequential)? 
In general, partial F-tests are used; some exceptions to this are described in 
many experimental design textbooks.

Example 1 (Continued)

The ANOVA table with sequential sums of squares for our model is shown 
in Table 2. Because F* = 49.07 > F0.95,3,82 = 2.72, we reject H0  : b1 = b2 = b3 =
0 and conclude that at least one coeffi cient is non-zero (i.e., at least one of the 
three genes’ expression level is signifi cantly associated with natural killer 
cell levels). F* = 146.70 tests whether gene 1 is associated with the outcome, 
F* = 0.002 tests whether gene 2 is associated with the outcome after adjusting 
for the effect of gene 1, and F* = 0.50 tests whether gene 3 is associated with 
the outcome after adjusting for the effects of gene 1 and gene 2.

If instead we compute partial sums of squares (Table 3), we see that the 
partial sums of squares do not add up to equal the model sum of squares. The 

Table 2
Sequential ANOVA Table for the Natural Killer Cell Data

 Sequential sum Degrees Mean
Source of squares (SS) of freedom squares (MS) F* P value

Model 1,937.13  3    645.71  49.07 <0.0001
 Gene 1 1,930.53  1 1,930.53 146.70 <0.0001
 Gene 2     0.02  1     0.02  0.002   0.96
 Gene 3     6.58  1     6.58      0.50   0.48
Error 1,079.00 82    13.16
Total 3,016.13 85

Table 3
Partial ANOVA Table for the Natural Killer Cell Data

 Partial sum Degrees Mean
Source of squares (SS) of freedom squares (MS) F* P value

Gene 1 1,819.01  1 1,819.01 138.22 <0.0001
Gene 2     1.19  1     1.19      0.09   0.76
Gene 3     6.58  1     6.58      0.50   0.48
Error 1,079.00 82    13.16
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square of each t-test statistic (Equation 2) is equal to its corresponding partial 
F-test statistic; these test the association of each gene with the outcome after 
adjusting for both other genes. The partial and sequential sums of squares for 
gene 3 are identical, because both represent SS(X3|X1, X2).

3. Assessing Model Fit
3.1. What to Assess

An important part of any analysis is assessment of how well the chosen 
model fi ts the data. Seven aspects of the model should be assessed:

(i) independence;
(ii) normality;
(iii) linearity for each predictor variable;
(iv) constant variance (homoscedasticity);
(v) presence of outliers;
(vi) correlation of predictor variables with each other (collinearity); and
(vii) need for additional predictor variables.

As for simple linear regression, we use a standardized version of the 

residuals, the studentized residuals r y y s hi i i i= −( ) −ˆ / ( )2 1  (Chapter 8, 

Equation 5) where hi is now computed using all p − 1 predictor variables; see 
Neter and others (1) for details. The quantity hi is a measure of the distance 
between (xi1, xi2,  .  .  .  , xi,p−1) and (x̄1, x̄2,  .  .  .  , x̄p−1) and is called the leverage. This 
standardization results in an approximate N(0, 1) distribution for ri.

3.2. Tools Used to Assess Model Fit

All diagnostics used for simple linear regression can be used for multiple 
linear regression as well. Summary plots of the ri (stem-and-leaf plots, box-and-
whisker plots, histograms, normal probability or quantile plots, and sequence 
plots) are used for assessing normality, independence, and the presence of out-
liers. Normality is diffi cult to assess and as a rule of thumb requires n > 30. A 
plot of ri versus xik, for each of the k = 1, 2,  .  .  .  , p − 1 predictors, can be used to 
assess constant variance and each predictor’s linearity; see Chapter 8 for details. 
An additional tool is a plot of ri versus ŷ i. When assumptions of normality, linear-
ity, and constant variance are met, this plot should show a random-like scatter 
of points approximately equally spread above and below the horizontal at 0.

Example 1 (Continued)

Diagnostic plots are shown in Figure 2. Figures 2a–2c each show no indi-
cation of violations of linearity or constant variance; this is confi rmed by 
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Fig. 2. Diagnostic plots from the regression of Y on X1, X2, and X3.
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Figure 2d. Figures 2e–2f show the residuals are approximately normally dis-
tributed, with slightly light tails. None of the plots indicate any outliers.

As mentioned in Chapter 8, outliers can be outlying in Y, in X, or both. 
Identifying outliers is important because outlying observations can “pull” 
the regression line toward them, thus infl uencing the estimation. Potential 
outliers should always fi rst be checked for errors; see Chapter 8. Because 
of the multidimensional nature from having multiple predictors, outliers are 
more diffi cult to visually spot in any 2-dimensional plot. There are several 
ways to instead quantitatively measure the degree to which an observation 
may be outlying. Studentized residuals are a measure of how outlying an 
observation is in Y; only approximately 5% of the ri should lie outside of ±2
and only approximately 0.1% should lie outside of ±3. Another is leverage, 
defi ned above, which is a measure of how outlying an observation is in 
the multidimensional X direction. A third type of measure is infl uence; an 
observation is highly infl uential if its exclusion results in substantial changes 
in the fi tted line. DFFITS measures the infl uence of the ith observation on its 
own fi tted value ŷ i. DFBETAS measures the infl uence of the ith observation
on each estimated regression coeffi cient. Cook’s distance measures the infl u-
ence of the ith observation on all n fi tted values. Your software package should 
be able to compute these for you; see Ryan (2) for details and guidelines 
for use.

Collinearity occurs when predictors are correlated with each other. Pairwise 
collinearity can be assessed by estimating the correlation (see Chapter 8)
between each pair of predictors. Collinearity has several consequences: (1) 
Variances of the b̂k may be infl ated, thus reducing the power of tests. This can 
be measured for each Xk by the variance infl ation factor (VIF), which is a func-
tion of the R2 from a regression of Xk on all other predictors. See Ryan (2) for 
details and guidelines for use. (2) Magnitudes and possibly directions (signs) 
of regression coeffi cients may change depending on which predictors are 
included in the model. For this reason, it is always good to verify whether the 
direction and magnitude of each regression coeffi cient is biologically plausible 
within the context of your study. (3) Lastly, a t-test of H0  : bk = 0 (equivalent 
to an F-test using that predictor’s partial sum of squares) may give a different 
conclusion about H0 from the F-test based on that predictor’s sequential sum 
of squares. For example, suppose X1 and X2 are correlated and are entered into 
a model in that order. The t-test for b1 represents a test of X1 after adjusting for 
X2, and the t-test for b2 represents a test of X2 after adjusting for X1. In contrast, 
a sequential F-test of X1 represents a test of the relation of X1 with Y by itself 
(ignoring X2), and a sequential F-test of X2 represents a test of the relation of 
X2 with Y after adjusting for X1. As discussed above, you should use whichever 
test is appropriate for your scientifi c questions.
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Example 1 (Continued)

The Pearson correlation among our predictors is 0.36 between gene 2 and 
gene 3 expression levels, 0.15 between gene 1 and gene 2 expression levels, 
and −0.07 between gene 1 and gene 3 expression levels. The correlation of 0.36 
is not a particularly high correlation, and the directions and magnitudes of all 
our regression coeffi cients make sense when compared with the data plots in 
Figure 1. We thus do not suspect any problematic multicollinearity.

Unlike simple linear regression, a plot of ri versus a predictor not used in 
the model (denote it as Xnew) may not indicate whether that variable has an 
important relation with the response, above and beyond the relation of Y with 
all Xk in the model. If Xnew is correlated with any of the Xk, then a plot of ri

versus Xnew will not show the true relation and we must instead consider partial
regression plots. For example, let ri(Y|X1, X2) denote the residuals from the 
regression of Y on the two predictors X1 and X2, and let ri(Xnew|X1, X2) denote 
the residuals from the regression of Xnew on X1 and X2. A plot of ri(Y|X1, X2)
versus ri(Xnew|X1, X2) will indicate the form and strength of the relation between 
Y and Xnew after adjusting for the other predictors. If a pattern is seen in 
the plot, then Xnew should be added to the model. The correlation between 
ri(Y|X1, X2) and ri(Xnew|X1, X2) is called the partial correlation between Y and 
Xnew. This is easily extended to more predictors.

3.3. When Assessments Show a Problem

As for simple linear regression, transformations of Y or of any Xk can be 
attempted to correct for nonlinearity, nonconstant variance, and/or nonnormal-
ity; see Chapter 8 for details. Robust regression, ridge regression, weighted 
least squares regression, and nonparametric regression are other possibilities 
beyond the scope of this text; for example, see Ryan (2).

4. Special Cases: Polynomials and Interactions
4.1. Polynomial Regression

When linearity is violated and transformations do not correct the nonlin-
earity, a model with a nonlinear trend of Y with X can be considered. The 
easiest such trend to construct is a polynomial (e.g., a quadratic trend or a cubic 
trend). Polynomial regression can be used either when the true relation is 
likely a polynomial or when the relation is complex and a polynomial is 
thought to be a good approximation. A polynomial model is built by including 
each term of the polynomial as a predictor. A common example is a quadratic 
regression:
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yi = b0 + b1xi1 + b2(xi1 ∗ xi1) + ei

= b0 + b1xi1 + b2x
2
i1 + ei. (3)

b1 then represents the linear effect and b2 represents the quadratic effect. In 
order to preserve this interpretation of the coeffi cients, a general rule is that 
when a higher-order polynomial term (such as a cubic) is included, all lower-
order terms (linear and quadratic) must also be included, even if they are sta-
tistically nonsignifi cant. For example, not including the linear term in a quadratic 
regression forces the curve to be symmetric around X1 = 0 (the vertical axis), 
which is rarely appropriate. It is common to center the predictor by subtracting 
its mean value and then use the centered predictor in the model: yi = b0 + b1

(xi1 − x̄1) + b2(xi1 − x̄1)2 + ei; this can improve the computational stability of 
the estimation procedure. Inference and diagnostics are carried out as described 
in Section 2 and Section 3.

4.2. Regression with Interactions

It is often the case that the relation of one predictor with Y depends on the 
level of another predictor. A simple way of introducing this into a model is 
through an interaction (or product) of the two predictors with each other. For 
example, suppose Y is natural killer cell level and X1 is gene expression level 
for a particular gene of interest. The association of Y with X1 may be affected 
by age of the patient (X2). The third predictor in the following model is thus 
the interaction of the fi rst two with each other:

yi = b0 + b1xi1 + b2xi2 + b3(xi1 ∗xi2) + ei. (4)

How does this affect interpretation of our model? The intercept and slope of
Y (natural killer cell level) with X1 (expression) both depend on the value for 
X2 (age), and likewise the intercept and slope of Y with X2 (age) both depend 
on the value for X1 (expression). Rewriting the model in order to focus on the 
role of X2 will make this clear:

yi = [b0 + b1xi1] + [b2 + b3xi1]xi2 + ei. (5)

When xi1 = 2, then the intercept of Y with X2 is b0 + 2b1, and the slope of Y 
with X2 is b2 + 2b3. When xi1 = 4, then the intercept of Y with X2 is b0 + 4b1,
and the slope of Y with X2 is b2 + 4b3. What is the interpretation of b2 by itself? 
It represents the slope of Y with X2 (age) when xi1 (expression) is 0, and similarly 
b1 represents the slope of Y with X1 (expression) when xi2 (age) is 0. If an 
interaction such as X1 ∗X2 (called a second-order interaction) is included in a 



178 Eberly

model, then each of X1 and X2 should also be included, even if statistically 
nonsignifi cant. In general, when an interaction is present, all lower-order terms 
must also be included.

The choice of which interactions to include in a model, especially when 
many predictors are available, is diffi cult. Even with only fi ve predictors, there 
are 10 second-order, 10 third-order, fi ve fourth-order, and one fi fth-order inter-
action. Omitting interactions that have important relations with the outcome 
can lead to biased estimates for the predictors that are in the model. On the 
other hand, including interactions that are not needed can infl ate variances and 
thus reduce the power to test other predictors in the model.

In many situations, there will be interactions of particular interest that can 
be prespecifi ed before model fi tting begins. These interactions may be dictated, 
for example, by the study’s goals, by previous research, by an understanding 
of the underlying science, or by policy- or decision-making needs. In other situ-
ations, such as when the study is meant to be exploratory, the analysis may 
contain all second-order interactions but no higher-order because they are more 
diffi cult to interpret. The approach to be taken during analysis should be speci-
fi ed in advance.

5. Parallelism: Comparing the Linear Trend Across Groups
5.1. The ANOVA-Regression Connection: Class Variables for Groups

One form of multiple linear regression occurs when one or more of the pre-
dictors Xk correspond with categorical (class or grouping) variables rather than 
with continuous variables. Consider, for example, gender, where we specify 
X1 = 1 for an observation that is female and X1 = 0 for an observation that is 
male; X1 is thus an indicator (dummy) variable for female gender. Other common 
examples are treatment group (e.g., 1 for treatment, 0 for placebo) and race/
ethnicity, with levels for Hispanic, non-Hispanic black, non-Hispanic Asian, 
and non-Hispanic white. A class variable with four levels requires three indica-
tor variables. Here we might use an indicator for non-Hispanic black as X1,
an indicator for non-Hispanic white as X2, and an indicator for non-Hispanic 
Asian as X3; then Hispanics have X1 = X2 = X3 = 0 and this group is known 
as the reference group. A class variable with q levels requires q − 1 indicator 
variables.

Suppose we regress Y on the three indicator variables for race/ethnicity:

yi = b0 + b1xi1 + b2xi2 + b3xi3 + ei.

These indicator variables do not have to be defi ned exactly as we did above; 
your statistical software will do it automatically, and the documentation should 
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make it clear which defi nitions are being used. It is critical to understand your 
software’s defi nitions, so that the interpretation of the corresponding regression 
coeffi cients is clear. To get fi tted values, we compute for example

ŷ i = b̂0 + b̂1(1) + b̂2(0) + b̂3(0) = b̂0 + b̂1 for a non-Hispanic black, and
ŷ i = b̂0 + b̂1(0) + b̂2(0) + b̂3(0) = b̂0 for a Hispanic.

Thus, in a regression model that contains only indicator variable predictors, the 
interpretation of the intercept b0 becomes the mean of Y for the reference group, 
and the interpretation of a “slope” such as b1 becomes how much larger the 
mean of Y is for that group relative to the reference group. This regression 
model is equivalent to a one-way ANOVA of Y on race/ethnicity. The ANOVA 
tables (sums of squares, degrees of freedom, and F-test) produced by a regres-
sion procedure and an ANOVA procedure will be identical.

Example 2

The level of natural killer cell production in a cancer patient may be affected 
by a course of treatment for the cancer. A researcher measures the natural killer 
cell levels in serum samples from 172 people with lung cancer who have 
recently received one of two standard treatments (Fig. 3). Mean killer cell level 
was 32.39 (standard deviation 7.25) for the fi rst treatment group and 28.10 
(standard deviation 5.96) for the second treatment group. From a regression of 
killer cell levels on treatment group, the groups were found to be signifi cantly 
different (F* = 18.01 > F0.95,1,170 = 3.90, P < 0.0001). The fi tted regression line 
was ŷ i = b̂0 + b̂1I(treatment1) = 28.10 + 4.29I(treatment1) where I(treatment1)
is the indicator variable for treatment 1: equal to 1 for treatment 1 and 
equal to 0 for treatment 2. Thus b̂0 estimates the mean for the reference group 
(treatment 2) and b̂0 + b̂1 estimates the mean for treatment 1.

5.2. Regressions with Continuous and Class Variables

Often, a multiple linear regression contains both a continuous predictor and 
a categorical predictor. Suppose we consider the model

yi = b0 + b1xi1 + b2xi2 + ei

where X1 is an indicator variable for two treatments and X2 is gene expression 
level for a particular gene of interest. With X1 = 1 for treatment 1 and 0 for 
treatment 2, we compute fi tted values as

ŷ i = b̂0 + b̂1(1) + b̂2(expression) = [b̂0 + b̂1] + b̂2(expression)
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Fig. 3. Natural killer cell levels versus gene expression for two treatment groups.
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for a patient with this level of gene expression receiving treatment 1, and

ŷ i = b̂0 + b̂1(0) + b̂2(expression) = [b̂0] + b̂2(expression)

for a patient with this level of gene expression receiving treatment 2.
We now have two separate fi tted lines that describe the relation of Y to the 

predictor expression level: one for treatment 1 patients and one for treatment
2 patients. For the treatment 1 patients, the intercept is b̂0 + b̂1 and the slope 
is b̂2. For the treatment 2 patients, the intercept is b̂0 and the slope is b̂2. This 
is called parallelism or a parallel lines model. Although the two groups share 
a common slope of Y on X2, they have different intercepts.

Example 2 (Continued)

The researcher has collected gene expression relative to a control for one 
gene of interest and would also like to test the association of gene expression 
with natural killer cell levels. Our fi tted model is now

ŷ i = 12.10 + 0.88(1) + 7.81(expression) = [12.10 + 0.88] + 7.81(expression)

for a patient with this level of gene expression receiving treatment 1, and

ŷ i = 12.10 + 0.88(0) + 7.81(expression) = [12.10] + 7.81(expression)

for a patient with this level of gene expression receiving treatment 2.
Partial F-tests show that both treatment (F* = 132.95 > F0.95,1,169 = 3.90, 

P < 0.0001) and gene expression (F* = 255.46 > F0.95,1,169 = 3.90, P < 0.0001) 
are signifi cantly associated with natural killer cell levels. A fi tted line plot is 
shown in Figure 4, where we can see that the slope (the mean increase in killer 
cell levels associated with each 1 unit higher gene expression level) is the same 
for the two treatment groups, but the line for treatment 1 lies higher than the 
line for treatment 2.

5.3. Interactions with Class Variables

An extension of the multiple linear regression model above occurs when we 
consider the interaction of a continuous predictor with a categorical predictor. 
Suppose we consider the model

yi = b0 + b1xi1 + b2xi2 + b3(xi1 ∗xi2) + ei

where X1 is an indicator variable for treatment group, X2 is gene expression 
level, and the third predictor is equal to the interaction (product) of the two. 
Recalling that X1 = 1 for treatment 1 and 0 for treatment 2, we now compute 
fi tted values as follows:
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Fig. 4. Fitted line plot from the regression of Y on X1 (categorical predictor) and X2

(continuous predictor).
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ŷ i = b̂0 + b̂1(1) + b̂2 (expression) + b̂3 (1∗expression)
 = [b̂0 + b̂1] + [b̂2 + b̂3] (expression)

for a patient with this level of gene expression receiving treatment 1, and

ŷ i = b̂0 + b̂1(0) + b̂2 (expression) + b̂3(0∗expression)
 = [b̂0] + [b̂2] (expression)

for a patient with this level of gene expression receiving treatment 2.
We now have two separate fi tted lines that describe the relation of Y to the 

predictor X2, one for each treatment group. For the treatment 1 patients, the 
intercept is b̂0 + b̂1 and the slope is b̂2 + b̂3. For the treatment 2 patients, 
the intercept is b̂0 and the slope is b̂2. The lines are no longer parallel, because 
each group is allowed its own slope; this is sometimes called the separate slopes
model.

Why not just fi t two models that regress Y on X2: one model with only the 
treatment 1 patients and one model with only the treatment 2 patients? The 
advantage of a model with all observations together is that the sample size is 
larger than when the sample is split into groups. A larger sample size often 
leads to a better estimate of s2 and to higher power for hypothesis tests. The 
disadvantage of a model with all observations together occurs when the differ-
ent groups do not all share the same variance s 2 (i.e., nonconstant variance 
across groups); using all observations is then a violation of the constant variance 
assumption.

Example 2 (Continued)

The researcher is concerned that the previous analysis may misrepresent 
the association of gene expression with natural killer cell levels; this would 
be true if the gene–killer cell association differed by treatment group. We 
thus fi t a new model including a treatment by gene expression interaction 
yi = b0 + b1I(treatment1) + b2expression + b3(I(treatment1)∗expression) + ei:

ŷ i = 14.59 + 2.65(1) + 0.74 (expression) + 0.32 (1 ∗expression)
 = [14.59 + 2.65] + [0.74 + 0.32] (expression)

for a patient with this level of gene expression receiving treatment 1, and

ŷ i = 14.59 + 2.65(0) + 0.74 (expression) + 0.32 (0 ∗expression)
 = [14.59] + [0.74] (expression)

for a patient with this level of gene expression receiving treatment 2.
The fi rst fi tted line equation represents the relation of gene expression with 

natural killer cell levels for those in the treatment 1 group, and the second 
fi tted line is for those in the treatment 2 group (Fig. 5).
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A test of b3 yields t* = 2.93 (or its equivalent partial F* = 9.80) with P value 
0.002, thus we reject H0 : b3 = 0 and conclude that there is a signifi cant treatment 
by gene interaction. This confi rms that the association of gene expression level 
with natural killer cell level differs by treatment group.

6. Variable Selection: Choosing Among Many Explanatory Variables
6.1. Overview of Automatic Selection Procedures

In some studies, there are many predictors available for consideration, any 
of which may have an important relation with the outcome. In general, a useful 
model has relatively few predictors, so that it is easy to interpret (such a model 
is called parsimonious), but if important predictors are omitted, regression 
coeffi cient estimates (and hence fi tted values) can be biased. Automatic predic-
tor variable selection procedures were developed to provide objective, system-
atic methods for selecting predictors to include in a fi nal model. Selection 
procedures, however, are best used to identify several possible models that 
contain important predictors, so that then those few models can be examined 
in more detail by the analyst (e.g., taking into consideration collinearity, diag-
nostics, and study goals).

The all possible regressions procedure examines every possible combination 
of predictors and chooses the model with the “best” combination; there are 
several defi nitions of “best” that may be used, for example, highest R2; see Ryan 
(2). The backward elimination procedure starts with a model containing all 
possible predictors and then successively eliminates the least signifi cant predic-
tor, one at a time, until a fi nal model is reached that contains only statistically 
signifi cant predictors. The forward selection procedure does the same thing in 
reverse: it successively identifi es the most signifi cant predictor, one at a time, 
adding it to the model until all included predictors are statistically signifi cant. 
For the backward (forward) procedure, the least (most) signifi cant predictor is 
identifi ed by the magnitude of its partial F-test statistic.

6.2. Stepwise Selection Procedures

Perhaps the most popular selection procedure is the forward stepwise pro-
cedure, which combines the backward and forward selection ideas. Beginning 
with the model with no predictors, at each step in the selection, a predictor can 
be added to the model if its partial F-test is statistically signifi cant at a prespeci-
fi ed level, or a predictor can be deleted from the model if its partial F-test is 
no longer signifi cant at a (possibly different) prespecifi ed level. This identifi es 
a single fi nal model. The backward stepwise procedure operates similarly but 
begins with the model with all predictors.
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6.3. Cautionary Notes

It must be emphasized that if automatic selection procedures are to be used, 
they are best used as a screening tool to identify several possible “good” models 
worthy of further consideration. Selection of variables with these procedures 
can result in a model with a downwardly biased estimate of s 2, especially 
for small sample sizes; do not use them if n − p ≤ 10 and avoid using them if 
n − p ≤ 40.

Using these procedures when there are interactions thought to be important 
is diffi cult. These methods do not automatically include interactions; they need 
to be computed in advance and included in the list of potential predictors. 
However, the software running these procedures does not understand that each 
of the predictors that went into computing that interaction must also be included 
in any model containing that interaction.

7. Discussion
This chapter has provided an overview of multiple linear regression tech-

niques. Neter and others (1) and Ryan (2) provide more complete treatment. 
For more detailed coverage in particular on leverage, infl uence, collinearity, 
and selection procedures, see Ryan (2). Neter and others (1) discuss model 
validation. Vittinghoff and others (3) cover confounding, causal effects, coun-
terfactual experiments, mediation, interactions, and variable selection. Gelman 
and others (4) cover Bayesian regression models. Harrell (5) discusses more 
advanced topics, such as regression trees, imputation/missing data issues, model 
validation, and resampling. All of these techniques assume the sample consists 
of independently collected observations. When this assumption is violated, 
other types of regression models are needed (see Chapter 11).
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General Linear Models

Edward H. Ip

Summary
This chapter presents the general linear model as an extension to the two-sample t-test,

analysis of variance (ANOVA), and linear regression. We illustrate the general linear model 
using two-way ANOVA as a prime example. The underlying principle of ANOVA, which is 
based on the decomposition of the value of an observed variable into grand mean, group effect 
and random noise, is emphasized. Further into this chapter, the F test is introduced as a means 
to test for the strength of group effect. The procedure of F test for identifying a parsimonious 
set of factors in explaining an outcome of interest is also described.

Key Words: Common mean model; data decomposition; F test; signal-to-noise ratio; sum of 
squares; two-way ANOVA.

1. Introduction
The general linear model is a broad and encompassing class of statistical 

models that include 2-sample t-test (Chapter 7), analysis of variance (ANOVA; 
Chapter 7), and simple and multiple regression (Chapters 8 and 9). Viewed 
from such a vantage point, the general linear model is perhaps the most com-
monly used statistical procedure among clinical researchers.1 Historically, the 
2-sample t-test, ANOVA, and multiple regression were invented to address 
seemingly different data analytic issues. For example, the 2-sample t-test was 
designed for testing whether or not outcome measures from 2 groups, usually 
a treatment group and a control group, are different. Linear regression was fi rst 

1 The general linear model should not be confused with the generalized linear 
model, which includes the general linear model as a special case. In a generalized linear 
model (see Ref. 4), the response variables need not be continuous.
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developed in the context of prediction in a heredity study—one variable, such 
as a father’s height, was used to predict another, such as the child’s height. It 
did not take long for statisticians to recognize that the 3 methods—the t-test,
ANOVA, and multiple regression—all share some common characteristics 
(1–3). Stated in a general but somewhat loose form, the 3 methods are all based 
upon the following equation:

Response = Sum of effects due to different factors + noise 

The 2-sample t-test is set to detect an effect that arises from being a member 
of one group versus another in the midst of sampling error (noise). ANOVA 
handles the case of more than 2 groups. Multiple regression, on the other hand, 
postulates models that dictate that the response (the dependent variable) arises 
from the combination of one or more effects masked by random noise. The 
whole point of deriving the mathematical machinery that underlies these 
methods is to identify signs of effects, or signals, that are suffi ciently strong to 
be distinguished and separated from noise, which is inherent in the measure-
ment process because of the random nature of selecting a representative sample 
from a population.

While the general linear model can be an indispensable tool for clinical 
researchers for analyzing a broad range of data situations, its operating charac-
teristics and limitations need to be recognized. Briefl y, they are

 1. The response variable must be a continuous outcome measure.
 2. The assumed effects due to different factors must be additive (i.e., linear).
 3. The noise component must follow the same normal distribution regardless of a 

subject’s characteristics, treatment status, and level of response.

Mathematically, the General Linear Model can be expressed as:

 yi = b0 + b1xi1 +  .  .  . bp−1xi,p−1 + ei, (1)

where yi denotes the data value of the dependent variable Y from the ith obser-
vation; i = 1,  .  .  .  , n, xi1,  .  .  .  , xi,p−1 denote the p − 1 data values of the independ-
ent variables (predictors) X from the ith observation; and ei denotes the error 
component (noise) from the ith observation. Furthermore,

ei ∼ N(0, s2)

and is independent of yi. Equation 1 can also be written in matrix form: 
y = Xb + e, where X is the design matrix of the independent variables and 
y and e are vectors of yi and ei being stacked up.

Equation 1 indeed looks exactly the same as the equation for multiple 
regression (Equation 1, Chapter 9). However, there are subtle differences. 
First, the dependent variable Y in a general linear model may be a vector. For 
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example, when measurements of both systolic and diastolic blood pressures are 
taken from the same individual as joint responses, then Y = (Ysystolic,Ydiastolic)
forms the dependent variable. Second, the emphasis of the general linear model 
is that the independent variables X are categorical. Indeed, it can be shown that 
when there is only one categorical predictor X1, which is coded X1 = 1 if the 
subject is in the treatment group and X1 = 0 if he or she is not (i.e., is in the 
control group), then the difference between the group means of treatment and 
control is b1. Thus, a t-test is equivalent to testing whether or not b1 is statisti-
cally signifi cant. The control group is said to be a reference group. Analogously, 
ANOVA can be formulated in terms of tests of signifi cance of coeffi cients b
in Equation 1. Table 1 lists various methods that can be considered special 
cases of the general linear model, and they are illustrated using an example of 
testing for the effi cacy of a hormone-therapy drug for treating cancer in a clini-
cal trial conducted on mice.

2. ANOVA Table
The ANOVA table is an essential tool for applying the general linear model 

to clinical data analysis. The fundamental idea underlying ANOVA is to decom-
pose each data value into pieces that reveal how the factors, singly or in com-
bination, contribute to the variation in the data. By examining the individual 
pieces and the overall structure of the decomposition, a clinical researcher can 
glean important information not available from traditional statistical tests.

The decomposition of data occurs at 2 levels. At the fi rst level, the original 
data value can be split into various pieces, and the table corresponding with 
each piece is called an overlay. The values in the overlay tables are then squared 
and summed to form a sum of squares (SS). At a second level, the SS are 
decomposed, and the results are often depicted in the form of an ANOVA table. 
The sums of squared values provide information about both the strength of the 
effect and the noise level contained in the values of a data set. With such infor-
mation available, it is then possible to test whether or not a specifi c effect is 
purely due to chance.

2.1. A Simple ANOVA Table for the Common Mean Model

A simple common mean model is perhaps a good way of starting to illustrate 
the 2 levels of decomposition of a data value. Consider an example (Table 2,
panel 1) in which patients presenting to an emergency unit in a hospital reported 
pain intensity on a 10-point numerical scale. The sample mean value of pain 
intensity of 5 patients is 5.0. Each data point can be decomposed into a mean 
component and a residual component (the fi rst level of decomposition). Table
2 shows how the components—the overlays—can be used to recover the data 
value (5). When the value in each of the data tables is squared, it results in a 
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corresponding set of tables of squared values (Table 3). The most important 
relation that can be observed from Table 3 is that SS(Total) = SS(mean) +
SS(error). Squares of data values have highly tractable mathematical properties. 
We would not have obtained the neat decomposition of the SS had the data 
value in Table 2 been raised to the fourth power. The mathematical tractability 
of the SS provides the foundation for all kinds of ANOVA analyses. Table 4
summarizes information in Table 3 into the ANOVA table for the common 
mean model.

Table 2
Decomposition of Data Value into Common Mean 
Value and Residual

 3  2 6  4 10 Data value ( yi)

=

 5  5 5  5  5 Common mean value
     overlay ȳ

+

−2 −3 1 −1  5 Residual overlay
     ( yi − ȳ)

Table 3
Decomposition of Sum of Squares

Squares     Sum of squares

 9  4 36 16 100 165 SS (total)
     =
25 25 25 25  25 125 SS (mean)
     +
 4  9  1  1  25 40 SS (error)

Table 4
The ANOVA Table Summarizes the Values within the Overlays

Sum of squares Degrees of freedom Mean square
Source of variation (SS) (d.f.) (MS)

Mean 125 1 125
Residual  40 4  10
Total 165 5
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The degrees of freedom (d.f.) in Table 4 refers to the number of independent 
pieces of information that contribute to the source of variation, and mean square 
(MS) is the SS from a specifi c source of variation divided by its corresponding 
degrees of freedom.

Formally, the common mean model can be presented with the following 
characterizations:

 yi = m + ei, (2)

where we denote the ith data value by yi, i = 1,  .  .  .  , n; the common mean of 
the population by m; and the residual by ei. Note that the population common 
mean m is estimated by the sample mean ȳ in the actual decomposition.

Assumptions of the Common Mean Model

 1. The sample yi follows a normal distribution.
 2. The observations are independent.
 3. The common population mean (unknown) is m, and the common variance 

(unknown) is s 2.

The common mean model is summarized in Table 5.

2.2. One-Way ANOVA Table

One-way ANOVA is often used is to compare an outcome variable among 3 
or more groups that are independent but possibly have different means. Using 
the same principle of decomposing the sums of squares that we have seen in the 
naïve common mean model, which may not be very useful for analyzing complex 
data, one-way ANOVA is especially suitable for analyzing data from designed 
experiments (Chapters 1 and 12) in which data are collected over several levels 
of the same factor. In clinical trials, one of the most common applications of 
one-way ANOVA is the test for differences in effi cacy of several drugs, among 
which a candidate drug and some existing drugs would be included. The mem-
bership of a subject to a drug group, or the way in which a subject is classifi ed, 

Table 5
The Common Mean ANOVA Table

Sum of squares Degrees of freedom Mean square
Source of variation (SS) (d.f.) (MS)

Mean nȳ2 1 nȳ2

Residual ( )y yi
i

n

−
=
∑ 2

1

n − 1 
1

1
2

1n
y yi

i

n

−
−

=
∑ ( )

Total yi
i

n
2

1=
∑ n
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is considered a factor. Hence, one-way ANOVA is also called ANOVA with 
one-way classifi cation. It is a simple case of the general linear model.

The following example illustrates the procedure that leads to the formation 
of the one-way ANOVA table. In a study of Hodgkin’s disease (6), plasma 
bradykininogen levels were measured in 3 populations: normal subjects, patients 
with active Hodgkin’s disease, and patients with inactive Hodgkin’s disease. 
The globulin bradykininogen is the precursor substance for bradykinin, which 
is thought to be a chemical mediator of infl ammation. The original data (in 
micrograms of bradykininogen per milliliter of plasma) contained 23 observa-
tions for the fi rst group, 17 for the second, and 28 for the third. For illustration 
purposes, we only selected the fi rst 10 observations in each group. The data 
values are presented in Table 6.

The one-way ANOVA model states that a data value can be decomposed 
into a common mean, a group effect, and the rest—meaning a residual or an 
error term. The residual term should contain only noise and is assumed to be a 
random variate from a normal distribution with mean 0 and variance s2. Accord-
ingly, the formal model can be expressed as yij = m + ai + eij, i = 1,2,3, or in 
the matrix form y = Xb + e. The vector b = (m,a1,a2,a3), and the row of matrix 
X, consists of 1s, and 0s. For example, for members of the second group, the 
corresponding row in X is (1,0,1,0). To make sure that the model does not 
contain more moving parts (parameters) than it needs, we place constraints on 
ai. For example, a1 + a2 + a3 = 0.

The collection of overlays of the data values consists of the common mean 
overlay, the group effect overlay, and the residual overlay. The group effects 
can be estimated from the differences between individual group means and the 
common mean, which are shown in Table 7. The decomposition of data values 
is shown in Table 8. Note that under this decomposition, there is a fi tted value 

Table 6
Data Values of Bradykininogen Level in 3 Groups of Patients

Normal control Active Hodgkin’s disease Inactive Hodgkin’s disease

5.37 3.96  5.37
5.80 3.04 10.60
4.70 5.28  5.02
5.70 3.40 14.30
3.40 4.10  9.90
8.60 3.61  4.27
7.48 6.61  5.75
5.77 3.22  5.03
7.15 7.48  5.74
6.49 3.87  7.85
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y� for each observation y. For example, for the fi rst value in the Normal control 
group y = 5.37, the fi tted value y� = m� + a�1 = 5.962 + 0.084 = 6.046. It is common 
practice in statistics to use the hat notation to indicate an estimated value or 
fi tted quantity. The sample mean of the entire sample is denoted by ȳ..; the

number of observations in group 1 is denoted by ni and y
n

yi
i

ij
j

ni

. =
=

∑1

1

 is the

sample group mean. Each of the values in an overlay in Table 8 is squared to 
form an overlay of squared values (Table 9). Analogous to the decomposition 
of the sum of squares for the common mean model, the sum of squared values 
from each squared overlay table adds up to that of the squared original value 
table: SS(Total) = SS(mean) + SS(group) + SS(error). In the Hodgkin’s disease 
example, the values that correspond with these SS add up as follows: 1244.3 =
1066.4 + 42.9 + 135.0. The ANOVA table (overall mean included) for the 
bradykininogen example is presented in Table 10. Note that most software 
packages do not print out the mean row.

Generally, the one-way ANOVA procedure is characterized by:

 yij = m + ai + eij, (3)

where we denote the jth data value in the ith group by yij, i = 1,  .  .  .  , I, j =
1,  .  .  .  , ni; the common overall mean of the population by m, the population 
group effect of group 1 by ai; and the residual by eij.

Assumptions of One-Way ANOVA

 1. The sample yij for each i = 1,  .  .  .  , I follows a normal distribution.
 2. The observations are independent.
 3. The population mean (unknown) of the ith group is ai, and the groups share a 

common but unknown variance (unknown) s2 (the homoscedasticity assumption).

The ANOVA table is presented in Table 11, where n is the total number of

observations; that is, n ni
i

I

=
=
∑

1

.

Table 7
Values of the Estimated Common Mean and Group Effects for the 
Bradykininogen Example

 Common mean = 5.962
 Inactive Hodgkin’s

Normal control Active Hodgkin’s disease disease

Group mean 6.046  4.457 7.383
Group effect 0.084 −1.505 1.421
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Table 8
The Decomposition of the Original Data Value into Overlays for the 
Bradykininogen Example

Original data ( yij)

GI Normal control GII Active Hodgkin’s disease GIII Inactive Hodgkin’s disease

5.37 3.96  5.37
5.80 3.04 10.60
.... .... ....
6.49 3.87  7.85

=*

Common mean ( ȳ..) overlay

GI Normal control GII Active Hodgkin’s disease GIII Inactive Hodgkin’s disease

5.96 5.96 5.96
5.96 5.96 5.96
.... .... ....
5.96 5.96 5.96

+*

Group effect ( ȳi. − ȳi..) overlay

GI Normal control GII Active Hodgkin’s disease GIII Inactive Hodgkin’s disease

0.08 −1.50 1.42
0.08 −1.50 1.42
.... .... ....
0.08 −1.50 1.42

+*

Residual ( yij − ȳi.) overlay

GI Normal control GII Active Hodgkin’s disease GIII Inactive Hodgkin’s disease

−0.68 −0.50 −2.01
−0.25 −1.42 3.22
.... .... ....
 0.44 −0.59 0.47

*The arithmetic operations apply to each value in the overlays.

It is customary in ANOVA procedures to subtract the overall mean from 
the observed value (known formally as sweeping the mean from the data table 
when producing overlays) and to use the resulting corrected value as the basis 
for decomposition. Popular programs such as SAS and SPSS all report 
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Table 9
The Squared Overlay Tables and the Decomposition of Sum of Squares for the 
Bradykininogen Example

Original data ( yij
2)

GI Normal control GII Active Hodgkin’s disease GIII Inactive Hodgkin’s disease

28.84 15.68  28.84
33.64 9.24 112.36
.... .... ....
42.12 14.98  61.62

Total sum of squares 1244.3 =

Common mean ( ȳ2
..)

GI Normal control GII Active Hodgkin’s disease GIII Inactive Hodgkin’s disease

35.52 35.52 35.52
35.52 35.52 35.52
.... .... ....
35.52 35.52 35.52

Total sum of squares 1066.4 +

Group effect (( ȳ i. − ȳ ..)
2)

GI Normal control GII Active Hodgkin’s disease GIII Inactive Hodgkin’s disease

0.006 2.25 2.02
0.006 2.25 2.02
.... .... ....
0.006 2.25 2.02

Total sum of squares 42.9 +

Residual (( yij − ȳ i.)
2)

GI Normal control GII Active Hodgkin’s disease GIII Inactive Hodgkin’s disease

0.46 0.25  4.05
0.06 2.01 10.35
.... .... ....
0.20 0.34  0.22

Total sum of squares 135.0

corrected sums of squares (or corrected total sums of squares). Formally, one 
can think of the corrected procedure as applying decomposition of the following 
form:

 yij − m = ai + eij, (4)
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with the corresponding ANOVA table, shown in Table 12. The SS due to the 
group effect is often referred to as the between-group SS, and the residual is 
referred to as the within-group SS. It can also be seen from the column for MS 
that the MS (group effect) is the sample variance estimate for variation in group 
means, whereas the MS (residual) is the variance estimate for the within-group 
variance, assuming that all of the groups share a common variance (the homo-
scedasticity assumption).

2.3. Two-Way ANOVA Table

One-way ANOVA is useful only when the effect of one factor on the 
outcome is considered and manipulated. In many designed experiments, several 
experimental factors are manipulated at the same time. Two-way or higher-way 
ANOVA are general linear models developed for situations in which there are 
2 or more factors being varied. Two-way ANOVA will be described in this 
section. Although the principle of data value and variance decomposition 

Table 10
The ANOVA Table Summarizing Results in the Bradykininogen Example

Sum of squares Degrees of freedom Mean square
Source of variation (SS) (d.f.) (MS)

Mean 1066.4  1 1066.4
Group effect   42.9  2   21.5
Residual  135.0 27    5.0
Total 1244.3 30

Table 11
One-Way ANOVA Table (Overall Mean Included)

Sum of squares Degrees of freedom
Source of variation (SS) (d.f.) Mean square (MS)

Mean nȳ ..2 1 nȳ ..2

Group effect n y yi i
i

I

( . .. )−
=
∑ 2

1

I − 1 
1

1
2

1I
n y yi i

i

I

−
−
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j
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remains the same, the two-way ANOVA involves an important feature that is 
not seen in one-way ANOVA—interaction between factors.

The following example, adapted from Northway and others (7), illustrates 
two-way ANOVA and how interaction is handled. In a designed experiment 
for a drug, 16 male and 16 female dogs were assigned randomly to treatment 
with either a vehicle control (group 0) or one of three graded doses (8, 25, 
75 mg/kg for groups 1, 2, and 3, respectively) of an investigational compound. 
By design, each treatment group contained 4 dogs of each sex. Oral dosing by 
gavage feeding was performed once daily. Prior to treatment, blood samples 
were collected from the jugular vein of each animal after overnight starvation 
for alkaline phosphatase measurement. The 2 factors in this experiment are 
dosage and gender. Table 13 shows the data set. A plot of the means of the 
alkaline phosphatase levels at various dosages shows that the mean response 
in female dogs looks rather different from that of the male dogs (Fig. 1), which 
suggests that there may exist both a main effect (due to gender) and an inter-
action effect (the female and male dogs react differently to different dosage 
levels). An interaction effect would translate into unequal slopes of the 
male and female profi le lines in Figure 1. The two-way ANOVA table in 
Table 14 indicates that indeed the mean square value of the gender effect is 
almost 9 times that of the residual (error), suggesting that there could be a 
gender effect. The interaction effect seems mild. Formal statistical tests of such 
an effect will be discussed in the subsequent section. If the interaction term is 
not included in the model, then its SS is included as part of the error term. Note 
that the sample sizes in each cell (e.g., group 1 male forms a cell) are equal. 
This kind of experiment is said to have a balanced design. In the above example, 
the number of replications per cell is n = 4. Unbalanced designs are more dif-

Table 12
One-Way ANOVA Table (Mean Corrected)

Sum of squares Degrees of freedom
Source of variation (SS) (d.f.) Mean square (MS)

Group effect n y yi i
i

I

. ..−( )
=
∑ 2

1
I − 1 

1

1
2

1I
n y yi i

i

I

−
−( )
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Residual y yij i
j

n

i

I i
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==
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2

11
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1
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2

11I
y yij i

j

n

i
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==
∑∑ .

Total y nyij
j

n

i

I i

2 2

11

−
==

∑∑ .. n − 1
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Table 13
Alkaline Phosphate Level in 32 Dogs for Different Treatment Effects

Alkaline   Alkaline
phosphatase level Sex Group phosphatase level Sex Group

169 M 0 125 F 0
291 M 0 138 F 0
158 M 0 113 F 0
122 M 0 137 F 0
203 M 1 170 F 1
178 M 1 139 F 1
141 M 1 131 F 1
181 M 1 125 F 1
101 M 2 113 F 2
199 M 2 150 F 2
141 M 2 155 F 2
149 M 2 133 F 2
135 M 3 113 F 3
153 M 3 102 F 3
147 M 3 128 F 3
157 M 3  91 F 3

•
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•
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Fig. 1. Mean alkaline phosphatase levels by gender and dosage.
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fi cult to handle mathematically but are easily analyzed using statistical soft-
ware. We focus on balanced design in this chapter. The two-way ANOVA 
model is

 yijk = m + ai + bj + abij + eijk, (5)

where we denote the kth data value in the (ij)th cell by yijk; for i = 1,  .  .  .  , I,
j = 1,  .  .  .  , J, k = 1,  .  .  .  , n. The common mean of the population is m; the popu-
lation group effect due to the fi rst factor (factor A) is ai; the population group 
effect due to the second factor (factor B) is bj; the interaction effect between 
the 2 factors is abij, and the residual is eijk.

Assumptions of Two-Way ANOVA

 1. The sample Yijk for the (ij)th cell i = 1,  .  .  .  , I, j = 1,  .  .  .  , J follows a normal 
distribution.

 2. The observations are independent.
 3. The population means (unknown) of classifi cation due to the factors A and B are 

respectively ai and bj, and the groups share a common but unknown within-group 
variance s2 (the homoscedasticity assumption).

Table 15 summarizes the two-way ANOVA table. In Table 15, yijk is the 
kth observed data value in the (ij)th cell, i; i = 1,  .  .  .  , I, j = 1,  .  .  .  , ni, ȳ... is

the overall sample mean of the entire sample; y
nJ

yi ijk
k

n

j

J

..=
==

∑∑1

11

 is the sample

group mean of the fi rst factor; y
nI

yj ijk
k

n

i

I

. .=
==

∑∑1

11

 is the sample group mean of

the second factor; and n is the number of observations within a single cell.

Table 14
The ANOVA Table Summarizing Results in the Alkaline Phosphatase Level 
Experiment

Sum of squares Degrees of freedom Mean square
Source of variation (SS) (d.f.) (MS)

Gender  9870.1  1 9870.1
Group  4757.8  3 1585.6
Gender × group  2262.1  3  754.0
 interactiona

Error 26755.0 24 1114.8
Corrected total 43644.0 31

aIt is conventional notation to use the multiplication sign for interaction, but the multiplication 
should not be taken literally.
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2.4. Other Cases of One- and Two-Way ANOVA

 1. In two-way ANOVA, when the number of observations per cell is 1, it is not 
possible to detect interaction. One can still test for main effects by assuming that 
there is no interaction (refer to Sections 3 and 4).

 2. Sometimes a group can be considered as a member of a random sample drawn 
from a larger population. In such cases, the group effect parameters (ai in one-way 
ANOVA, and either one or both of ai and bj in two-way ANOVA) are assumed 
to follow a normal distribution. This kind of so-called random-effect model will 
be discussed in Chapter 11. If some effects in a model are random and some are 
fi xed (like the ones that are treated in this chapter), the model is called a mixed 
model (Chapter 11).

 3. A subject in an ANOVA study may be measured repeatedly, such as in a longitu-
dinal study. In the alkaline phosphatase level experiment, measurements are actu-
ally taken from each dog at several time points (week 4, week 8, and week 12). 
In such cases, the independence assumption between observations is no longer 
valid, and the within-subject variation should also be taken into account. This is 
also discussed in Chapter 11.

3. F Tests
It is not uncommon to see an F statistic and a P value reported as part of an 

ANOVA table. Being a workhorse that biostatisticians use for scientifi cally and 
rigorously testing whether there is a difference between groups, the F test plays 
a central role in the general linear model.

Table 15
Two-Way ANOVA Table (Mean Corrected)

Source of Degrees of
variation Sum of squares (SS) freedom (d.f.) Mean square (MS)
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The underlying idea of the F test is to empirically compare the SS of the 
signal to that of the noise. If the variation in the signal level, as measured by 
the mean square (MS) of the effect, is small compared with the variation in the 
noise, then the F test would inform a researcher that the difference in group 
variation is likely to arise only from chance variation. On the other hand, if the 
magnitude of the MS in a signal is large compared with the magnitude of the 
level of noise, then the F test would suggest that the difference is likely to be 
genuine. However, we still need to answer the question “how large is large?” 
Knowing the properties of the distribution of the signal-to-noise ratio would 
allow us to quantify the likelihood of observing specifi c values of the ratio.

3.1. Distributions of Sums of Squares

The SSs in an ANOVA table follow specifi c distributions given the assump-
tion that the error term in Equations 2–5 is normal. Recall that if X is a random 
variable that is drawn from a standard normal distribution, then X2 will be dis-
tributed as a central chi-square distribution with 1 degree of freedom (see 
Chapter 4). The sums of squared values of standard normal random variables 
also follow central chi-square (c2) distributions.2 If we assume that a factor in 
an ANOVA analysis does not contribute to the dependent variable (i.e., in 
technical terms, the null hypothesis is true), then its associated SS will follow 
the central chi-square distributions. The ratio between 2 chi-square distribu-
tions, modifi ed by their respective degrees of freedom, follows an F distribu-
tion. In symbols, we write

χ
χ

k

m
k m

k

m
F

2

2
~ ,,  (6)

where k and m denote the degrees of freedom of the respective chi-square dis-
tributions. The F distribution is ideal for testing the signal-to-noise ratio. An F
distribution always has 2 degrees of freedoms (k, m), and the shape of its dis-
tribution varies with the values of k and m.

3.2. Example of F Test

We use the phosphatase level experiment as an example to illustrate the F
test. The entire procedure can be described as follows:

 1. State the model Yijk = m + ai + bj abij + eijk, where Yijk denotes the phosphate level, 
ai; i = 1,2 denotes the gender effect, bj; j = 1,  .  .  .  , 4 denotes the group effect; and 
abij denotes the interaction effect.

2 However, if the individual normal random variables do not all have zero means, 
then the resulting chi-square is not central and is said to have noncentrality parameters.
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 2. State the null and alternative hypotheses for each effect. For group effect, they are

H0 : b1 = b2 = b3

Ha : H0 is not true, or at least one group differs from the others

 3. Form the ANOVA table. The F statistic is computed using the following equation:

F
effect

error
=

MS

MS( )

( )
.  (7)

 4. Find the P value of the F statistic by referring it to the F probability distribution 
with the 2 appropriate degrees of freedom, one from the effect and the other from 
the error.

The expression within each pair of parentheses in Table 16 shows how a 
number is computed for the phosphatase example. P(Fk,m > c) denotes the prob-
ability of observing a number higher than c in an F distribution with k and m
degrees of freedom. Figure 2 shows the graph for the F3,24 distribution and the 
P value associated with testing the effect of group. If a signifi cance level a is 
specifi ed, then the P value allows for drawing a conclusion from the hypothesis 
test. For testing the group effect in the alkaline phosphatase level example, 
Table 17 describes the decision rule and the conclusion when the signifi cance 
level a = 0.05.

Table 16
The ANOVA Table Summarizing Results in the Alkaline Phosphatase Level 
Experiment with F Statistic and P Value

Sum of Degrees of Mean
Source of squares freedom square
variation (SS) (d.f.) (MS) F P value

Gender  9,870.1 1 9,870.1 8.85 0.007

    9870 1

1114 8

.

.
⎛
⎝

⎞
⎠

 (P(F1,24 > 8.85))

Group  4,757.8 3 1,585.6 1.42 0.261

    1585 6

1114 8

.

.
⎛
⎝

⎞
⎠

 (P(F3,24 > 1.42))

Gender × group  2,262.1 3    754.0 0.68 0.575
 interactiona

    754 0

1114 8

.

.
⎛
⎝

⎞
⎠

 (P(F1,24 > 0.68))

Error 26,755.0 24 1,114.8
Corrected total 43,644.0 31

aIt is conventional notation to use the multiplication sign for interaction, but the multiplication 
should not be taken literally.
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P(F>1.42)=0.261

Fig. 2. The F distribution with degrees of freedom (3, 24). The probability P(F >
1.42) is indicated by the area underneath the curve on the right-hand side of the vertical 
line F = 1.42.

Table 17
Interpreting P Value from an F Test at a = 0.05

Magnitude of P value P > 0.05 P ≤ 0.05
Conclusion The effect is not signifi cant The effect is signifi cant
Meaning in terms of b1 = b2 = b3 Some of the bj’s are not equal
 hypothesis
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4. Testing of Nested Hypotheses
Researchers often fi nd themselves in a situation in which they have collected 

data on a large number of predictor variables, all of which seem to contribute 
in some way to the outcome, but they want to identify a parsimonious set of 
factors that best explains the outcome. The full model, which uses all the rele-
vant predictor variables, always achieves a higher percentage R2 (coeffi cient of 
multiple determination; see Chapter 9). However, the full model is more 
complex in that it uses more predictors, so a trade-off exists between how much 
variance is explained and model complexity. An ANOVA table is a powerful 
tool to help resolve the trade-off issue.

A very general ANOVA approach in Table 18 shows how individual effects 
of factors can be summarized by presenting only the contribution of the entire 
set of factors (i.e., the model) relative to the error in terms of the SS. The nota-
tion here is such that yi denotes the data value of the ith observation, and y�i

denotes the estimated value under the model, which contains an intercept and 
p − 1 independent predictors. For two-way ANOVA with interaction, SSM 
includes SS due to factor A, factor B, and interaction.

To compare the reduced and full models, the following statistic, which can 
be obtained from ANOVA tables for the full and reduced models, is called the 
general linear F test:

F
reduced full

full
full reduced=

− −( ) )) ]
.

SSE( SSE( [d.f. d.f.

MSE( )
 (8)

The Venn diagram in Figure 3 illustrates the various pieces of SS when a 
reduced model is compared with a full model. It can be seen that the expression 
SSE(reduced) − SSE( full) is the additional contribution in SS of the full model, 

Table 18
ANOVA Table (Mean Corrected)

Source of  Degrees of freedom Mean square
variation Sum of squares (SS) (d.f.) (MS)

Model SSM
observations

= −( )∑ �
y yi

2
p − 1 SSM

p −1

Residual SSE
observations

= −( )∑ y yi i
� 2

n − p SSE

n p−

Corrected total SST
observations

= −( )∑ y yi .. 2
n − 1
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and its magnitude is represented by the darkened area in Figure 3b. The 
symbols d.f.full and d.f.reduced denote, respectively, the degrees of freedom of 
the full and reduced models. The F statistic follows an F distribution with the 
respective degree of freedom d.f.full − d.f.reduced and d.f. in MSE( full).

In the phosphate example, suppose the full model contains gender, group, 
and gender × group, and the reduced model contains only gender and group.
The ANOVA table for the full model is presented in Table 19 and the reduced 
model is presented in Table 20. We can use these ANOVA tables to test the 
null hypothesis: there is no interaction effect versus the alternative hypothesis: 
there is interaction effect.

Applying Equation 8, SSE(reduced) − SSE( full) = 29017.1– 26755.0 =
2261.1, d.f.full − d.f.reduced = 7 − 4 = 3, we have

SS(Factor A)
SS(Factor B)

SST
A

Fig. 3. (a) Venn diagram showing SSM and SST of a reduced model of 2 factors, 
A and B. The rectangular area represents SST, the shaded area SSM, and the unshaded 
area SSE. (b) Venn diagram showing SSM and SST for the full model for 3 factors, 
A, B, and C. The area shaded with only horizontal lines represents the additional SS 
contributed by factor C. The unshaded area, now diminished, represents SSE.
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SS(Factor A)
SS(Factor B)

SS(Factor C)

SST
B

Fig. 3. (continued)

Table 19
ANOVA Table for the Full Model: yijk = m + ai + bj + abij + eijk

Sum of squares Degrees of freedom Mean square
Source of variation (SS) (d.f.) (MS)

Full model 16,889 7 2412.7
Residual 26,755.0 24 1114.8
Corrected total 43,644.0 31

Table 20
ANOVA Table for the Reduced Model: yijk = m + ai + bj + eijk

Sum of squares Degrees of freedom Mean square
Source of variation (SS) (d.f.) (MS)

Reduced model 14,627  4 3656.8
Residual 29,017.1 27 1074.7
Corrected total 43,644.0 31
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F = =
2261 1 3

1114 8
0 68

.

.
. ,

which is distributed as an F distribution with d.f. = (3, 24) under the null 
hypothesis. The P value is 0.575, suggesting that the reduced model may be 
suffi cient.

The test to determine which factor to include in the fi nal model may 
seem straightforward for balanced designs in two-way ANOVA—we only need 
to look at which factor has signifi cant P values. This is only possible in a 
balanced design because all factors are orthogonal—the magnitude of the 
SS of a factor does not depend on when it enters the model. Therefore, one 
can say such things as “The drug effect explains 30% of the variance, and 
the gender effect explains 10% of the variance.” Unfortunately, for unbalanced 
designs and many other models in the general linear model class, such as 
the multiple regression model, the orthogonality property does not exist. In 
other words, the SS associated with a factor depends upon the sequence in 
which the factor is added or removed from the model. This is due to the 
“overlap” between the SS explained by various factors. For a 3-factor model, 
the SS for factor C appears in several forms: SS(C), SS(C|A), SS(C|B), 
SS(C|A,B), where SS(C|A) denotes the SS for C after A has entered the model, 
and so on. The fact that all these SSs are the same in a balanced design ANOVA 
is more of an exception than a rule. A way to visualize the overlapping explana-
tory power can be found in Ip (8). A discussion of this is also provided in 
Chapter 9.

In summary, the F test can be used to scientifi cally determine if a reduced 
model suffi ces when evaluated against a more complex model that contains a 
larger number of relevant predictors. Although the method for testing nested 
hypotheses is rather general in nature, except in special cases, such as balanced 
design in ANOVA, the SS of a predictor depends upon the sequence in which 
it enters the model. Caution should be exercised in interpreting results when 
multiple steps are taken to sequentially remove or add predictor variables to a 
model.

5. Conclusion
The F test is useful for testing a broad range of hypotheses involving linear 

models. The methods described in this chapter are generalizations of the t-test,
ANOVA, linear regression, and multiple linear regression discussed in previous 
chapters. The general linear model can be used to compare nested models that 
allow questions such as “does the effect of A remain signifi cant after adjusting 
for B?”
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Linear Mixed Effects Models

Ann L. Oberg and Douglas W. Mahoney

Summary
Statistical models provide a framework in which to describe the biological process giving rise 

to the data of interest. The construction of this model requires balancing adequate representation 
of the process with simplicity. Experiments involving multiple (correlated) observations per 
subject do not satisfy the assumption of independence required for most methods described in 
previous chapters. In some experiments, the amount of random variation differs between 
experimental groups. In other experiments, there are multiple sources of variability, such as both 
between-subject variation and technical variation. As demonstrated in this chapter, linear mixed 
effects models provide a versatile and powerful framework in which to address research objectives 
effi ciently and appropriately.

Key Words: Fixed effects; mixed models; random coeffi cient models; random effects; two-
stage analysis.

1. Introduction
A statistical model provides a mathematical description of how data are 

produced. An underlying goal of statistical analysis is to describe the process 
generating the data at hand while accounting for all sources of variation. George 
E. P. Box, a well-known statistician, once said “All models are wrong, but some 
are useful.” Albert Einstein said, “Make your theory as simple as possible, but 
no simpler.” As these quotes indicate, this process requires a balance of sim-
plicity and proper representation of the biological system at hand. On the 
surface, linear mixed effects models may seem like a complex analytical 
approach with diffi cult concepts to grasp. In actuality, it is a simple extension 
of linear models with the added benefi t of accounting for features in the data 
that aid in the interpretation and conclusions of the research study.
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Regression (Chapter 8 and Chapter 9) and general linear models (Chapter
10) are extremely useful and versatile statistical modeling tools. They can be 
used to examine hypotheses on correlation, treatment effects and interactions, 
and for estimation of means. These basic models assume the residuals are 
independently and identically distributed as N (0,s2). This assumption implies 
that the residuals must be independent of each other with mean 0 and constant 
variance s2 over the entire range of the response variable. In addition, it is 
assumed that residual or unexplainable error is the only source of random vari-
ability. However, in practice, not all experiments or studies may satisfy these 
assumptions. The data collection process or research design may induce correla-
tion between observations or introduce multiple sources of random variation 
beyond that of the residual error. Each of these characteristics (correlation and 
multiple sources of error) would lead to ineffi cient and potentially misleading 
conclusions to a research study if the standard or classical methods of analysis 
were brought to bear on the problem. Hence, some additional tools are needed 
in order to make inferences.

Linear mixed effects models are powerful and useful approaches to many 
applications and may be used to address several study objectives. For example, 
they may be used in split plot experiments to account for varying sizes of 
experimental units (e.g., if tilling method is applied to the entire fi eld while a 
variety is planted on only half of the fi eld). They are useful in repeated measures 
studies to account for correlations between multiple observations per experi-
mental unit and to specify or investigate different structures of correlation. In 
multilocation clinical trials, the results of fi tting a mixed effects model enable 
researchers to broaden the inference space to the entire population of clinic 
locations, rather than just those participating in the trial. They can be used to 
model spatial variability on microchips or in geological studies. In genetics, 
they allow researchers to estimate and test for the heritability of a given trait.

Throughout this chapter, we discuss fi xed and random effects, and it is useful 
at this point to discuss these terms. A key component to developing a statistical 
model is identifying factors that contribute to the total variation observed in a 
data set. This total variation is then partitioned among these explainable or 
identifi ed sources of variation, and any unexplained or unidentifi ed sources of 
variation are attributed to factors representing residual error. The importance 
of this exercise is that if an explainable source of variation is not accounted for 
in the statistical model, the residual error component will be infl ated, resulting 
in ineffi cient analyses and inferences. The drawback of this exercise is that if 
too many factors are identifi ed for a particular data set, the generalization of 
the research project comes into question because the researcher may be identi-
fying factors that are uniquely associated with his or her study. The challenge 
then becomes a balance between maintaining generalization of the data while 
accounting for sources of variation.
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This leads to what is referred to as the inference space of a study. The infer-
ence space, or population of interest, refers to the population about which the 
researchers will make conclusions based on the study at hand. For example, in 
a multilocation clinical trial for colon cancer treatment, one may wish to make 
inferences about treatment differences at one of the participating locations, 
overall participating locations in the study, or beyond the participating locations 
to all similar locations that would treat people with the disease of interest. In 
this context, location is an important source of variation to the data because the 
geographical makeup of the populations can vary greatly, but within a location 
a homogeneous group of subjects can be identifi ed. These three inference 
spaces are very different and are called narrow, intermediate, and broad infer-
ence spaces, respectively, in the literature (1–3).

For narrow and intermediate inference spaces, a researcher would consider 
center location as a fi xed effect. A factor (e.g., center location) is considered 
as a fi xed effect if the levels studied represent all possible levels (or cover the 
expected range of levels) about which inference is to be made. For research 
projects conducted using similar procedures and selection criteria for the same 
centers, the contribution of a fi xed effect factor to the variation in data can be 
anticipated from study to study. Within the statistical model, fi xed effects 
(center location) represent a mean shift in the data. In this example, treating 
location as a fi xed effect will result in a narrower confi dence interval because 
its contribution to variation would not be added to the variability of the esti-
mated treatment effects.

For a broad inference space, a researcher would consider center location as 
a random effect. A factor (e.g., center location) is considered as a random effect 
if the levels used in the study represent a random sample of a larger set of 
potential levels. In this case, if different levels of the factor (or different centers) 
were selected for a similarly conducted study, it would not be possible to 
anticipate a priori its contribution to the variation in the data. For this example, 
it may not be reasonable to assume that similar mean shifts in the data would 
occur if different centers take part in the study. Random effects allow the 
researcher to account for an important source of variation by adding an addi-
tional source of random variation to the statistical model beyond that of residual 
error. In this example, treating location as a random effect widens the confi -
dence intervals of the estimated treatment effects across locations by adding its 
contribution of variation to the residual error.

2. Random Block Design
To begin to understand the impact of declaring an experimental factor as a 

random effect in a mixed model, consider the following example of a simulated 
multilocation clinical trial with balanced data. It is of interest to test a new che-
motherapy regimen (A) against the standard of care (B) for reduction of tumor 
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size prior to surgery for breast cancer in a multilocation clinical trial. The 
research plan is to conduct this trial at three different centers, and it is assumed 
that the randomization process within each center controls for extraneous factors 
that would confound the results of the study. The data are given in Table 1. The 
statistical model to describe the change in tumor size is given by

yijk = m + ti + cj + eijk

 i = A,B

 j = 1,2,3

 k = 1,2,3,4,5 (1)

where, m is the overall mean change in tumor size, ti is deviation from the overall 
change in tumor size due to treatment, cj is the effect due to center, and eijk is 
residual error, which is assumed to be N (0,s 2). In this model, cj is a blocking 
factor. Blocking is used in statistical models to remove a known source of varia-
tion in the data from the residual error of the model, thus allowing for a more 
effi cient comparison of treatment differences. In this example, varying infl u-
ences such as referral patterns or geographic location of the centers may infl u-
ence the outcome variable and should be accounted for in the model.

For this model, ti is treated as a fi xed effect because the research aim is to 
directly compare two particular treatment regimens. However, cj can be treated 
as either a fi xed effect or a random effect depending on the inferences that the 
researcher wishes to make. In a balanced data design such as Table 1, the best 
estimate of the mean tumor size reduction due to the ith treatment regimen is 

Table 1
Data from a Simulated Example of a Multilocation Clinical Trial for Change in 
Tumor Size

 Center

 1 2 3 Treatment
 (cm) (cm) (cm) mean (cm)

Treatment regimen
 A 2.0, 0.0, 0.0, −4.5, −1.0, 0.0, −3.5, −4.5, −1.17

1.0, −1.0 −3.0, 0.0,  −2.0, 1.0
   −2.0
 B 0.0, 3.0, 1.0, −1.5, 1.5, 2.5, 0.5, 0.5, 1.0,  0.67

 2.5, 0.5  3.5, 0.5  −2.5, −3.0

Center mean 0.9 −0.4 −1.25 −0.25
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simply the average of all observations that received the ith treatment regimen. 
In terms of the statistical Model 1, this is expressed as

 ȳi·· = m + ti + c̄. +ēi·· (2)

where the dot denotes a sum over the respective subscript. If cj is treated as a 
fi xed effect, then inference made on the mean tumor size reduction due to the 
ith treatment is limited to only those centers that participated in the study. To 
see this, the statistical expectation and variance of the ith treatment mean in 
Model 2 is given by

E(ȳi··) = m + ti + c̄.

with

var .. .yi( ) =
×

σε
2

3 5

Here the average center effect is added to the estimate of the ith treatment mean 
m + ti. Also note that the variance and corresponding confi dence interval of 
this estimate would be based solely on the residual error. In order to make 
inferences of treatment-specifi c mean tumor size reduction beyond that of 
the participating centers under a fi xed effects model, an assumption must be 
made that the average center effect would be similar if different participating 
centers took part in the study. This may be a diffi cult assumption to justify 
depending on the nature of the study, and caution is warranted when such an 
inference is made.

However, if cj is treated as a random effect with a distribution of N (0,s2
c),

the corresponding statistical expectation and variance of the mean change given 
in Model 2 is given by

E(ȳi··) = m + ti

with

var .. .yi
c( ) = +

×
σ σε

2 2

3 3 5

Here, the estimate for the mean tumor size reduction due to the ith treatment 
is free of the center effect. Under the random effects assumption, the model 
accounts for center effects by treating them as an additional source of variation 
that is added to the variance of the estimated treatment effect and not the mean. 
It is clear to see that the variance and corresponding confi dence intervals will 
be larger than that of the fi xed effect counterpart if the variance between centers, 
s2

c, is non-zero. In essence, the uncertainty in reproducibility of the mean center 
effect in a fi xed effect model is attributed to the variance of the estimate.
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Returning to Table 1, two features stand out regarding the tumor size reduc-
tion. First, treatment regimen A appears to have a larger mean reduction in 
tumor size relative to regimen B. Also, the mean change in tumor size is quite 
varied when considering treatment center. Treating cj as a fi xed or random 
effect in this example results in the same estimated treatment specifi c means 
of − 1.17 (regimen A) and 0.67 (regimen B). This is a special feature of bal-
anced designs and does not hold true for designs with varying numbers of 
subjects per treatment combination. Under the fi xed effect assumption, the 
variance of these estimated means is 0.2147 (a standard error of 0.4633). 
Under the random effect assumption, however, the variance estimate is 0.4982 
(a standard error of 0.7058), which is approximately twice that of the fi xed 
effect model.

Figure 1 gives a visual depiction of the distribution of treatment-specifi c 
mean change in tumor size with corresponding 95% confi dence intervals under 
the two assumptions for the center effect cj. Notice that each curve is centered 
about the respective estimated means and that the distribution under the random 
effects model is wider than that of the fi xed effects model. Also, the 95% con-
fi dence intervals are wider for the random effects model. For these data, the 
overall F-test for signifi cant treatment differences is the same for either assump-
tion (F = 7.83, P = 0.0096), which is again a feature unique to balanced data.
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Fig. 1. The curves show the distribution of mean change due to regimen A (top 
panel) and regimen B (bottom panel) under the assumption of fi xed (dashed lines) or 
random (solid lines) center effect cj. The horizontal lines indicate the width of the 
respective 95% confi dence intervals.
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Although the effect of treatment regimen A on reducing tumor size is greater 
than that of regimen B, the fi xed effect model and random effect model result 
in different interpretations on whether or not the change in tumor size for 
regimen A is signifi cantly different from zero. When data are balanced, as 
they are here, the blocking factor cancels out when testing and estimating the 
difference between two treatments. However, when estimating or testing 
hypotheses regarding one treatment mean, the blocking factor does not cancel 
out and impacts the calculation. Under the fi xed effects model, the test would 
indicate that the change in tumor size due to regimen A is signifi cantly differ-
ent from zero (P = 0.0183) whereas the random effects model would indicate 
that this is not the case (P = 0.1104). This can be seen in Figure 1 by inspec-
tion of the 95% confi dence intervals under each assumption and noting whether 
or not they contain the value zero. The conclusion from this data under the 
random effects model is that tumor growth would be suppressed for regimen
A but that there is not necessarily a statistically signifi cant overall reduction in 
tumor size.

The fi xed effects hypothesis is considered to be a “narrow” hypothesis 
because extrapolation to other studies would only be valid if the same experi-
mental factors were evaluated. That is, if another study was conducted using 
the same set of clinical centers, the expected results of the new study would be 
the same as the current study. The random effects hypothesis is a “broad” 
hypothesis in that it makes inferences to the entire population of experimental 
factors, not just the ones evaluated in the study. That is, if another study was 
conducted using a different set of clinical centers, the expected results would 
be similar to the current study.

3. Multiple Sources of Variation
In designs with multiple sources of variation (e.g., repeated or subsampling 

of experimental units or nested experimental factors), specifying an experimen-
tal factor as a fi xed or random effect has a dramatic impact on the test of sig-
nifi cance. Consider the following example. Redfi eld and others (4) conducted 
a study to estimate the prevalence of left ventricular dysfunction in the general 
population. A random sample of 2042 men and women age 45 and older was 
obtained from Olmsted County, Minnesota. Subjects were given a detailed 
physical exam, and echocardiographic imaging of the heart was performed to 
estimate ejection fraction (EF), which is the fraction of blood pumped out of 
the heart. Echocardiographic assessment of EF is not considered the gold stan-
dard method because of its technical variation, but it is less invasive and more 
cost effective than MUGA (multigated acquisition) scan, which requires the 
use of radioactive isotopes. For this reason, three assessments of EF were taken 
at different points of the cardiac cycle. Note that there are two sources of 
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random variation in the process giving rise to the data: that due to variation 
between subjects and that due to the technical variation of echocardiography 
itself. The goals of this study were to determine whether or not the distribution 
of EF depended on age and gender and to determine how much of the variability 
in EF was due to variation between subjects and how much was due to 
the technical variation of echocardiography itself. For illustration, Table 2
displays the data on a balanced subset of the enrolled subjects stratifi ed by age 
and sex.

The following linear mixed effects model can be used to address each of the 
researcher’s objectives:

Table 2
Ejection Fraction Data

 Male Female

Age Individual  Strata Individual  Strata Age strata
(years) data Mean mean data Mean mean mean

45–54 67.0, 65.8, 64.9 65.9 58.3 54.6, 61.9, 55.6 57.4 63.4 60.8
 66.4, 66.4, 64.0 65.6  65.1, 63.4, 58.7 62.4
 42.4, 37.7, 37.1 39.1  61.3, 62.9, 62.9 62.4
 64.0, 64.0, 64.0 64.0  55.6, 55.6, 55.6 55.6
 64.0, 58.5, 59.9 60.8  75.0, 75.0, 75.0 75.0
55–64 46.6, 44.5, 46.6 45.9 60.6 69.9, 70.1, 75.0 71.7 64.6 62.3
 60.0, 58.3, 60.0 59.4  57.5, 60.9, 68.6 62.3
 64.6, 64.6, 64.6 64.6  50.7, 53.6, 50.7 51.7
 69.1, 68.0, 62.1 66.4  65.1, 66.6, 71.6 67.8
 65.0, 58.3, 66.0 63.1  73.0, 71.8, 71.8 72.0
65–74 62.1, 60.4, 62.1 61.5 60.7 66.9, 66.5, 70.8 68.1 70.4 66.1
 68.0, 68.0, 69.1 68.4  75.0, 75.0, 75.0 75.0
 58.5, 48.0, 55.6 54.0  72.0, 72.0, 72.0 72.0
 60.9, 67.3, 64.0 64.1  63.1, 63.1, 63.1 63.1
 55.6, 53.4, 53.4 54.1  73.9, 72.8, 75.0 73.9
75+ 60.9, 60.9, 65.0 62.3 61.8 63.4, 61.7, 63.4 62.8 55.4 58.8
 57.5, 62.3, 63.5 61.1  70.8, 75.0, 70.8 72.2
 65.3, 58.0, 60.4 61.2  70.2, 70.2, 68.8 69.7
 61.2, 63.5, 61.2 62.0  32.0, 23.1, 29.8 28.3
 64.0, 63.1, 58.1 61.7  60.6, 59.0, 64.0 61.2
Sex- 60.3   64.2    Grand
specifi c       mean
mean       62.2

Ejection fraction was measured at three points of the cardiac cycle in a random sample of the 
Olmsted County, Minnesota population. A balanced subset of the data is displayed here stratifi ed 
by age and sex where each line of data pertains to a subject.
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 EFijkl = m + genderi + agej + genderi ∗ agej + subjectijk + eijkl

 i = 1,2

 j = 1,  .  .  .  ,4

 k = 1,  .  .  .  ,5

 l = 1,2,3 (3)

where subjectijk ∼ N (0,s2
p) and eijkl ∼ N (0,s 2

e).
In this model, EFijkl is the lth EF measurement on the kth subject from the 

ith gender and the jth age group, and m is the overall grand mean. Genderi rep-
resents the effect of the ith gender, agej represents the effect of the jth age 
group, and genderi ∗ agej allows for a potential interaction between age and 
gender. Both gender and age are considered fi xed effects for this study because 
they represent the complete range of values of gender and age. Subjectijk is a 
measure of the random variation due to the kth subject from the ith gender in 
the jth age group, and eijkl is the random variation or technical variation between 
the technical replicates on the same subject. It is assumed that subjectijk and eijkl

are independent of one another. Subjectijk and eijkl are considered to be random 
effects because if the study were to be repeated again, different subjects would 
likely be selected in the random sample.

Table 3 summarizes the ANOVA table from fi tting Model 3 to the EF data. 
P values are presented assuming subject as a fi xed and random effect for com-
parison. Notice the drastic differences in the P values! The fi xed effect column 
tests whether or not the variation due to age and sex are signifi cantly greater 
than what would be expected based on technical variation of the measuring 
device alone. Conversely, the random effect column tests whether or not the 
variation due to age and sex are signifi cantly greater than what would be 
expected based on variation between subjects.The between-subject variability 
is estimated to be 85.67, and the technical replicate variability is estimated to 

Table 3
Ejection Fraction Results

Source SS DF MS P value (R) P value (F)

Gender 473.62 1 473.62 0.1895 0.0001
Age 484.85 3 161.62 0.6115 0.0001
Gender*age 629.87  3 209.96 0.5049 0.0001
Subject*gender*age 8,434.56 32 263.58 0.0001 0.0001
Error 526.39 80 6.58
Total 10,549.29

The P value (R) column contains results from a model considering subject as a random effect, 
and the P value (F) column contains results from a model considering subject a fi xed effect.



222 Oberg and Mahoney

be 6.58. Hence, the variation between subjects accounts for 85.67/(85.67 +
6.58) × 100% = 93% of the variability observed in the EF data, and the techni-
cal variability is only 7% of the total variability, which is why the two models 
give such different results. From these results, these data do not provide evi-
dence that the systematic variation due to age and gender are signifi cantly 
greater than the random biological variability between subjects. However, when 
incorrectly specifying a subject as a fi xed effect, it appears that age and gender 
have large effects.

Combining the three EF observations per person by averaging or some other 
means is a common way for data such as these to be analyzed. By averaging 
the replicates, the amount of variability due to technical error is absorbed into 
the overall error term of the model and cannot be recovered directly from the 
ANOVA table. By averaging the replicates, the technical and between-subject 
sources of variation are combined into one error term, resulting in imprecise 
tests and confi dence intervals.

4. Correlated Data and Random Effects Regression
A special case of repeated measurements on a subject or experimental unit 

occurs in longitudinal studies and dose-response studies. For longitudinal 
studies, the same response variable for the same experimental unit is repeatedly 
measured over some time domain (e.g., hours, years). For dose-response studies, 
a prespecifi ed gradient of doses of the experimental factor under investigation 
is applied to the same experimental unit, and the same response variable is 
measured at each level of the gradient (e.g., pressure, temperature). The main 
objective for either study is to estimate the rate of change that occurs within an 
experimental unit in the response variable over the time or other gradient 
sampled. In addition, the association of this rate of change with other experi-
mental factors may also be of interest to the researcher (e.g., age and gender 
of the subject, active drug versus placebo).

Classic repeated measures analysis techniques can be viewed as either uni-
variate or multivariate methods. For either method, it is assumed that the sam-
pling domain is the same across all experimental units. For example, on the 
time domain scale, each experimental unit is measured at exactly the same time 
points. However, the multivariate methods are generally restrictive in the pres-
ence of missing data or when sampling times differ between subjects, so our 
focus here will be on univariate techniques. Because the same response is 
measured repeatedly over some sampling domain on the same experimental 
unit, one cannot assume that these responses are independent of one another. 
This induces a correlation between responses on the same experimental unit, 
and this needs to be adequately addressed within the statistical model.
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Consider an experiment in which the researcher is interested in determining 
if a new buffer signifi cantly increases the growth rate of bacteria in a culture. 
The researcher applies the new buffer to 10 wells and leaves 10 additional wells 
untreated, incubates the bacteria, and measures the population size of the bac-
teria at hours 1, 2, 4, 8, 16, and 24. A model to describe the data for the kth
well treated with the ith buffer at the jth time point is given by

 yijk = m + bufferi + timej + bufferi ∗ timej + eijk (4)

where m is the overall grand mean, bufferi is the effect due to the ith buffer, 
timej is the effect due to the jth time, bufferi ∗ timej is the interaction term 
between buffer and time, and eijk is the residual error, which we can no longer 
assume to be independently distributed as N (0,s 2) because of the six repeated 
measurements on each well.

For this type of situation, there are two approaches that can be used to 
account for the correlation. The fi rst and most fl exible approach is to specify 
the structure or pattern of correlation in the data when fi tting the model. This 
can be done by calculating the correlation between time points on the residuals 
from Model 4, which assumes that the errors are independent of one another. 
After determining a structure that is reasonable for the data, the model is refi t 
using a specifi c correlation structure. Most software packages that handle 
repeated measures data are suited for such a purpose. Alternatively, a random 
effect term can be added to the model that captures to some degree the fact that 
observations are correlated with one another. To achieve this, the above model 
would be

yijk = m + bufferi + timej + bufferi ∗ timej + wellik + eijk,

where everything is the same as before, but now the term wellik is added to the 
model and is assumed to be independently distributed N (0,s 2

well), and the 
residual term is assumed to be independently distributed N (0,s 2

e). The result 
of these assumptions is that the correlation between any two observations on 
the kth well treated with the ith buffer is equal to

corr y yijk ilk
well

well

, .( )
+

σ
σ σε

2

2 2

This is simply the intraclass correlation coeffi cient. Regardless of the spacing 
in the sampling domain, this structure implies that all observations are equally 
correlated with one another. That is, responses measured 1 hour apart would 
have the same correlation as those measured 1 apart.

However, these approaches have limitations and cannot accommodate the 
following. First, the sampling times per subject may vary across the subjects 
in a longitudinal study. For example, a study where it was intended to measure 



224 Oberg and Mahoney

subjects every 2 months will have some subjects with interval sampling times 
of a few weeks to several months. Also, the number of times the response was 
measured may vary from subject to subject. That is, a protocol that calls for 
fi ve sampling time points may have subjects with anywhere between 1 and 5 
measured time points. Lastly, in the case of the intraclass correlation model, 
the implied assumption that all responses are equally correlated with one another 
regardless of the spacing in sampling of the response is generally not reason-
able. Responses measured farther apart from one another tend to be less corre-
lated than those measured closer in time. A random effects regression model 
(a special case of a mixed effects model) can be used to effi ciently account for 
the correlation between repeated measurements while allowing unequal spacing 
between visits and for the spacing pattern to vary across individuals. In addition, 
subjects with missing data are included in the analysis and are weighted accord-
ing to the amount of information they provide.

Melton and others (5) report bone mineral density (BMD) data in a random 
sample of 270 (107 premenopausal, 163 postmenopausal) Olmsted County, 
Minnesota, women with mean age 57 ranging from 21 to 93 years. BMD was 
measured on each woman approximately annually, with 1 to 4 visits per woman, 
with 75% of them having 4 visits. The wrist BMD measurements for pre- and 
postmenopausal women are shown in Figure 2 for a random subset of the study 
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Fig. 2. Bone mineral density at the wrist versus baseline age for a random sample 
of women from Olmsted County, Minnesota. Triangles denote premenopausal women; 
circles denote postmenopausal women. First observations are highlighted in black; 
follow-up observations are in gray.
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participants. In studies of osteoporosis, BMD is a measure of bone frailty with 
lower values of BMD indicating a higher susceptibility to bone fracture. Low 
bone mass in postmenopausal women is defi ned as a value 1 SD below the 
young normal mean (or 0.51 g/cm2), whereas osteoporosis by World Health 
Organization criteria is defi ned as a value 2.5 SD or more below the mean (or 
0.44 g/cm2). Figure 2 clearly shows that as the population ages, the mean BMD 
lowers indicating greater risk of bone fractures for elderly women. Our objec-
tives here are to determine what age-related changes occur in BMD at the wrist 
and whether these changes are signifi cantly higher in postmenopausal women 
than in premenopausal women.

An estimate of the age-related change allowing for different rates of change 
in the two menopausal groups can be obtained from this sample of women 
spanning the spectrum of age by regressing BMD on baseline age and meno-
pausal status with an interaction term between age and menopausal status to 
test for differential slopes:

 BMDi = b0 + b1(menoi) + b2(agei) + b3(agei × menoi) + ei. (5)

Here, b0 is the overall population average of BMD, menoi is an indicator vari-
able with value 1 for menopausal women and value 0 for premenopausal 
women, b1 is the mean shift in BMD due to menopause, b2 is the cross-sectional 
or population rate of change in BMD per year of age, b3 is the change in slope 
from b2 for menopausal women, and the residual error ei is assumed to be 
independently distributed as N (0,s 2). This is a standard linear model, and the 
results of fi tting Model 5 to this data are presented in Table 4. The estimation 
of the model parameters for this model was covered in Chapter 9. Thus, the 
regression model for premenopausal women is estimated to be

BMDi = 0.5668 − 0.0002(agei)

and the regression model for the postmenopausal women is estimated to be

Table 4
Estimates Corresponding with Cross-sectional 
Parameters in Model 5 Fit to BMD Data Presented 
in Figure 2

Parameter Estimate Standard error P value

b0 0.5668 0.01306
b1 0.1723 0.01806 <0.0001
b2 −0.0002 0.00033 <0.5927
b3 −0.0039 0.000373 <0.0001
ei ∼N(0, 0.0031)
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BMDi = 0.7391 − 0.0041(agei).

These results indicate that the cross-sectional rate of change in BMD with 
age in menopausal women is −0.0041 g/cm2 per year of age, signifi cantly 
greater than the rate observed in premenopausal women of −0.0002 g/cm2 per 
year of age.

Figure 3 presents the full longitudinal data as in Figure 2, but here the points 
for an individual subject are connected to indicate that the same subject was 
measured across time and to highlight the subject specifi c trajectories over time. 
Figure 3 does little to change our initial claim about the cross-sectional decline 
in BMD across age groups. In addition, it appears that the variability in the rate 
of change may be larger in the postmenopausal group than in the premenopausal 
group.

Various strategies for modeling the correlation present in longitudinal data 
such as these have been proposed in the literature. One popular strategy is a 
two-stage analysis. The fi rst stage consists of fi tting the linear regression 
model

 BMDij = b0i + b1i(ageij) + eij (6)

separately for each individual in the study. The subscript i indicates that this is 
the regression model associated with the ith subject. After fi tting Model 6 to 
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Fig. 3. Bone mineral density data as shown in Figure 2. Here, lines connect the 
observations for given subject over time. Trajectories are shown in black for a random 
subset of the sample in order to ease viewing.
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each subject, the individual estimates of b1i (the estimates of the subject specifi c 
slopes) are saved and carried forward to the second stage of analysis.

Recall that the goals of the study are to estimate the rate of change for both 
the premenopausal and postmenopausal women, to test whether these rates of 
change are signifi cantly different from zero, and to test whether the rate of 
change is different for the two groups. Hence, the second stage of analysis 
consists of constructing confi dence intervals and conducting multiple t-tests.
The fi rst hypotheses to test are whether the slopes for each menopausal group 
are signifi cantly different from zero:

H0 : b1
pre = 0 versus H1 : b1

pre ≠ 0

and

 H0 : b1
post = 0 versus H1 : b1

post≠ 0

where b1
pre and b1

post are the population mean subject-specifi c slopes for pre-
menopausal and postmenopausal women, respectively. The second hypothesis 
to test is whether or not the slopes differ between premenopausal and post-
menopausal women:

H0 : b1
pre − b1

post = 0 versus H1 : b1
pre − b1

post ≠ 0.

Results for these hypothesis tests are shown in Table 5. This analysis indicates 
that there is no signifi cant within-subject change in BMD over time for the 
premenopausal women, but that the postmenopausal women do have a signifi -
cant decline. Confi dence intervals for the quantities of interest can be con-
structed as well.

This is a reasonable fi rst approach to this analysis. However, some women 
have more observations than others causing the estimates b̂1i to have varying 
levels of precision. In addition, the variation in the subject-specifi c slopes is of 
interest. Knowing the variability in the women’s trajectories is as important as 

Table 5
Results of a Two-Stage and Mixed Effects Model Analysis of the BMD Data

Null hypothesis Analysis Estimate Standard error P value

H0 : bpre = 0 Two-stage −0.00001 0.0003 0.7321
 Mixed model 0.0001 0.0002 0.7897
H0 : bpost = 0 Two-stage −0.0050 0.0005 <0.0001
 Mixed model −0.0045 0.0004 <0.0001
H0 : bpre − bpost = 0 Two-stage −0.0050 0.0006 <0.0001
 Mixed model −0.0046 0.0003 <0.0001
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knowing the average trajectory. Random effect models provide a general frame-
work, integrating these issues (the population average slope, the variability 
between subjects, the variability within a subject about her own slope, and the 
variation in precision for each subject) into one analyses method.

Linear mixed effects models are an extremely versatile tool for addressing 
these hypotheses effi ciently. They can model the within-subject correlation, and 
the estimation process is weighted so that subjects providing more information 
and less variable information give more to the analysis than subjects with less 
information or more variable information.

A model containing two random effects, as follows, allows the correlation 
between observations to decrease as the time between them increases.

BMDij = b0 + b1(ageij) + b0i + b1i(ageij) + eij

where b0i � N (0,s 2
b0

)

b1i � N (0,s 2
b1

)

cov(b0i,b1i) = sb0,b1

 eij � N (0,s 2
i). (7)

The fi xed portion of Model 8 expresses the mean BMD across all subjects as

E(BMDij) = b0 + b1(ageij),

and the random effects portion

b0i + b1i(ageij) + eij

expresses each individual subject’s deviation from the overall mean. That is, 
each subject is allowed to have their own unique regression line with intercept 
(b0 + b0i) and slope (b1 + b1i) but a common error distribution, eij.

The assumptions on the random effects for Model 8 can be evaluated and 
different correlation structures can be explored within the random effects 
regression model. The correlation and variance structure that is specifi ed for 
Model 8 was investigated using the methods outlined by Diggle and others (6).
In short, the residuals from fi tting the fi xed effects portion of Model 8 to the 
entire data set were obtained. Then, for each individual subject, the half-squared 
differences between residuals for ageij and ageik (for all ageij ≤ ageik) were 
created and plotted against the difference in sampling times (in this case ageik

− ageij). Figure 4 displays the results of this procedure for the BMD data. An 
interesting aspect of this plot is that when averages of the half-squared 
difference in residuals are taken over small windows of time, one obtains an 
estimate of the variance incorporating the correlation between observations on 
the same subject. Also, the average across all half-squared residuals provides 
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an estimate of the overall variance. Figure 5 is a blow-up of Figure 4 in order 
to highlight some features in the data. The horizontal lines for the pre- and 
postmenopausal women are highlighted to represent the overall variance in 
the data for these respective groups when the correlation between multiple 
observations on a subject is not incorporated into the model. The curves 
represent the estimated variances at each sampling time interval when incorpo-
rating the correlation. Notice that as the time between samples increases, the 
local variance approaches the overall variance in the data, indicating that the 
correlation is decreasing with time. Note for Model 8 that (1) the variance 
increases as the spacing between sampling time increases and (2) the correlation 
between BMD measurements depends on the observed spacing in sampling 
points (and the actual sampling times across individuals may vary). All three 
observations made here are reasonable assumptions when dealing with longi-
tudinal data.
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Fig. 4. Evaluation of correlation structure in residuals. The y-axis is the half-squared 
difference between a subject’s residuals at time j and k [i.e., 1-2 (residualij − residualik)2,
for ageij ≤ ageik], and the x-axis is the difference between the subject’s ages at time j
and time k (i.e., ageij − ageik, the amount of time between a subject’s jth and kth visit). 
The horizontal lines are the estimated variances for the pre- (dashed) and postmeno-
pausal (solid) women without accounting for the correlation present in the data. The 
smoothed curves are the estimated variances for the pre- (dashed) and postmenopausal 
(solid) women incorporating the correlation present in the data. A blown up portion of 
this plot is presented in Figure 5.
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Recall that our initial objective in this study was to estimate and compare 
the rates of change between pre- and postmenopausal women. Also, Figure 4
and Figure 5 indicate differences between pre- and postmenopausal women in 
amount of variation associated with the longitudinal rates of change.

The following model accommodates menopausal status and the different 
variances easily:

BMDij = b0 + b1(menoi) + b2(ageij) + b3(menoi × ageij)
+b0i + b2i(ageij) + eij

where b0i � N (0,s 2
b0

)

b2i � N (0,s 2
b2

)

cov(b0i,b2i) = sb0,b2

and eij � N (0,s 2
epre), premenopausal

 eij � N (0,s 2
epost), postmenopausal. (8)

Here, the residual error variances of s 2
epre and s 2

epost are allowed to differ between 
premenopausal and postmenopausal women. For Model 9, b1 represents the 
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Fig. 5. Here the y-axis of Figure 4 is expanded in order to more easily see the 
smoothed correlation structure for the pre- and postmenopausal groups. The horizontal 
lines are the estimated variances for the pre- (dashed) and postmenopausal (solid) 
women without accounting for the correlation present in the data. The smoothed curves 
are the estimated variances for the pre- (dashed) and postmenopausal (solid) women 
incorporating the correlation present in the data.
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overall mean shift in BMD measurements for postmenopausal women, and b3

represents the deviation from the cross-sectional association of age with BMD 
measurements for postmenopausal women. Table 6 summarizes the results of 
fi tting Model 9 to the data presented in Figure 3.

The estimated models for pre- and postmenopausal women are

BMDij = 0.5611 + 0.00006(agei0) and

 BMDij = 0.7686 − 0.0045(agei0) (10)

respectively. For premenopausal women, the cross-sectional rate of change in 
BMD due to aging is negligible (P = 0.7897). However, for postmenopausal 
women, there is clearly a negative cross-sectional rate of change in BMD due 
to aging. As indicated by the tests of signifi cance, pre- and postmenopausal 
women have signifi cantly different rates of change in BMD measurement. Note 
that the estimate of variability is twice as high in the postmenopausal group 
than the premenopausal group. Table 5 shows the results of the two-stage 
approach and the random effects regression. Although the estimates are very 
similar using either approach, the random effects regression approach provides 
for smaller standard errors of the estimates and thus more precise confi dence 
interval estimates.

5. Model Fitting
There are several ways to approach the estimation of random effects in a 

linear mixed effects model. All give equivalent results if the data are balanced 
with no missing data points. However, when data are unbalanced, the results 

Table 6
Results of Fitting Model 9 to the BMD Data in Figure 3 Allowing for Different 
Amounts of Variation in the Subject Specifi c Slopes Between the Two Groups 
of Women

Parameter Estimate Standard error P value

b0 0.5611 0.0095 <0.0001
b1 0.2075 0.0169 <0.0001
b2 0.0001 0.0002 <0.7897
b3 −0.0046 0.0003 <0.0001
ei ∼N(0, 0.0003) Premenopausal

∼N(0, 0.0007) Postmenopausal
b0i ∼N(0, 0.0046)
b2i ∼N(0, 0.0000002)
Cov (b0i, b2i) −0.0001



232 Oberg and Mahoney

differ. There are few experiments fi nished where a subject has not dropped out, 
failed to show up for a scheduled visit, or some unforeseen event causes some 
of the data to be missing.

Model fi tting in mixed effects models has been the subject of a large 
amount of research. In standard linear regression and ANOVA as discussed 
in Chapters 7 to 10, ordinary least squares (OLS) methods are used to 
estimate parameters and construct test statistics, and these are easily calculated 
by hand. Though the theory for more complex situations was developed in the 
mid-1900s (7), these models did not see signifi cant use until the 1990s with the 
development of reliable and fl exible software such as the MIXED procedure in 
SAS (3).

For all but the simplest problems, the best solution to mixed models involves 
the maximization of a nonlinear function by an iterative algorithm. Currently, 
maximum likelihood (ML) and restricted maximum likelihood (REML) are 
considered to be the best methods available, with REML the default in most 
modern software packages. The numerical diffi culty of the problem has led to 
a large number of simple approximate methods [such as method of moments 
(MOM), minimum norm quadratic unbiased estimation (MINQUE), and 
minimum variance quadratic unbiased estimation (MIVQUE)], which are still 
available in some systems. More powerful computers have rendered them 
unnecessary for almost all problems encountered by the average user. It is very 
important to understand what methods are being used by your software. [For 
further reading, see (3,6,8,9)]. These references also provide discussions of the 
impact of missing data on mixed effects model fi tting in addition to the discus-
sion of missing data in Chapter 17.

6. Power and Sample Size
As discussed in Chapter 12 and Chapter 19, carefully planning and 

designing the optimal study to address the research objective maximizes 
the amount of information gained and the effi ciency with which the objectives 
are addressed. Designing the optimal study involves power and sample 
size calculations in order to assess feasibility of various designs. It is possible 
to perform power calculations for linear mixed effects models, and methods 
for doing so with the aid of software are demonstrated in Stroup (10). However, 
this requires the researcher to provide estimates for any variances and 
covariances that will be in the model, as well as an educated guess as to the 
mean responses in each treatment group. Obtaining the needed information 
may be daunting and require more assumptions than a researcher is willing 
to make.

Care should be taken to think about aspects such as dropout in a longitudinal 
or repeated measures study and the possible effects on the sample size and 
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modeling process. (See Chapter 17 for a discussion.) In addition, Verbeke and 
Molenberghs give a nice discussion of this and the impact on linear mixed 
effects models in Chapter 23 of their book (8). For more on power and sample 
size, see Chapter 19.

7. Extensions
In some cases, the data of interest cannot be assumed to be normally distrib-

uted. For example, outcomes such as presence or absence of disease that follow 
a binomial distribution, or count data such as number of infections for a subject 
that follow a Poisson distribution. In other cases, the outcome may not be lin-
early related to the predictors. For example, growth data frequently follow a 
nonlinear logistic growth curve. However, these types of data may require some 
of the tools for properly modeling correlation structures, or allowing for random 
effects as well. Mixed effects models have been extended to these situations. 
Generalized linear mixed effects models (11) have been developed for the situ-
ation of nonnormally distributed data, and nonlinear mixed effects models have 
been developed for the situation where a response is nonlinearly associated with 
the predictors (9).

With these tools, as for linear mixed effects models, it is extremely important 
for the researcher to have an in-depth understanding of the software and what 
it is doing in order to perform an analysis correctly. It is also very important 
to understand the differences between population level and subject level infer-
ence. In the generalized linear models framework, these two levels of inference 
result in different models. The same model cannot be used for both as is pos-
sible in linear mixed effects models. Further reading on generalized linear 
mixed models can be found in McCulloch (11) and for nonlinear mixed effects 
models in Davidian and Giltinan (9).
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Working with a Statistician

Nancy Berman and Christina Gullíon

Summary
This chapter presents some guidelines for working with a statistician, beginning with 

when and why you should consult one. We emphasize the importance of good communication 
between the statistician and the client and the need for clearly defi ned tasks and a timetable. 
Other considerations, such as security, confi dentiality, and business arrangements are 
discussed.

Key Words: Authorship; collaboration; communication; consultation; tasks; timetable.

1. Introduction
This chapter addresses some of the considerations and practical issues 

involved in working with a statistician. We will begin by discussing why one 
would want to work with a statistician, (Section 2) and at what point one should 
seek statistical help (Section 3). The statistician may participate in a study as 
either a collaborator or consultant, and we discuss the difference in Section 4.
The last sections deal with the most practical issues, the statistician’s role and 
tasks (Section 5) and business and professional arrangements (Section 6).
Section 7 deals with the special considerations that arise when one is working 
with a team of statistical and data management professionals rather than with 
a single individual.

2. Why Work with a Statistician?
This chapter comes at the end of a detailed book covering statistical methods. 

Why, with all this information at your fi ngertips, should you bother to work 
with a statistician? Surely with this book and any of the reasonably priced or 
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free software packages that do data analysis, you could generate your own P
values with no extra cost or trouble.

In some projects, you may not need to work with a statistician. For instance, 
if you have done a simple study, with 1 design factor and 1 outcome measure, 
and your hypothesis and data clearly match the assumptions and purpose of a 
statistical test that you know how to do and to interpret, you may be able to 
complete and publish your research without the aid of a statistician.

Most studies and data are not so simple. Methodological considerations in 
choice of design, measure, and analytic methods can rapidly exceed the scope 
of a fundamental text such as this. This does not mean that this text is not 
useful—a foundation in statistical thinking and methods is invaluable for 
working with a statistician and understanding the rationale for methodological 
choices. Such a foundation also provides a common language, which can 
greatly facilitate communication.

A variety of situations may lead you to consult a statistician. If your data do 
not exactly match the assumptions outlined for a statistical test, you may need 
to identify an alternative analytic approach. A statistician will know about a great 
many more methods than can be covered by a book such as this, such as more 
complex or specialized statistical procedures. Alternatively, the best strategy 
might be to transform your data—but how do you select the optimal transforma-
tion? What are the considerations in choosing to transform versus using an 
alternative statistical test? A statistician can help you answer these questions.

In addition to dealing with these issues in planning an analysis, a statistician 
can contribute to other aspects of a research project. A statistician can help you 
relate your research goals to the methods in this text and to understand what 
results can be expected. She may also be able to help you learn to use and 
understand a statistical software package, if you would like to do your own 
analysis. If you work with a statistician from the beginning of a project, as 
suggested below, she can help with the design of your study and offer ways to 
facilitate the implementation, including data collection, and fi nal analysis.

Example 1

In a particular study, the objective is to compare means or measures of 
central tendency. If the distribution of the data is skewed, it might be preferable 
to use a nonparametric method rather than a parametric test (Chapter 7). How 
skewed a distribution justifi es this shift? Would it be preferable to fi rst trans-
form the data and use a test on means? A variety of transformations are avail-
able, such as natural log or square root. The optimal choice may not be obvious. 
A statistician can help you determine if a transformation will be useful, which 
transformation, and ultimately which test to use.
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Example 2

In a longitudinal study with measures obtained several times on the same 
analytic units, a simple way to look at changes over time is to do a series of 
paired t-tests (Chapter 7). Unfortunately, this is not the best choice, for several 
reasons. The repeated tests might yield a signifi cant result or two just by chance, 
resulting in an inference that might not be replicable. In addition, these single-
time comparisons ignore the shape of a trend over time, which may be far more 
interesting and important to understanding the phenomenon you are studying. 
Choosing an appropriate method for analyzing longitudinal (or repeated meas-
ures) data is not simple. A repeated measures analysis of variance (Chapters
11 and 13), based on least-squares computations, provides an unbiased estimate 
of experimental effects only when none of the outcomes are missing and when 
other fairly stringent assumptions about the data are met. Each analytic unit 
that has any missing observation(s) is dropped from the analysis. Methods for 
dealing with missing data are described in Chapter 17. Investigators have his-
torically imputed missing values, but commonsense methods such as fi lling in 
means or last observation carried forward may produce misleading results. A 
statistician can provide guidance regarding current best practice for analyses 
when some data are missing. Alternatively, he might suggest using a general-
ized method, probably based on iterative maximum likelihood estimation, that 
relaxes requirements regarding data completeness and other features (Chapter
11). These are advanced techniques that require a strong theoretical understand-
ing as well as practical experience with the software to use successfully. 
Frequently, the analysis will require testing several assumptions about the 
data, which is not a straightforward process. This is a situation in which a 
statistician’s expertise is an important asset.

3. When to Seek Statistical Help
The best time to seek advice from a statistician is early in the planning of a 

project that will involve data collection and analysis. Statisticians are trained 
and experienced in developing study designs and can help develop a plan that 
will answer the research question while also making optimal use of your 
resources. A statistician can help translate your study goals into testable hypoth-
eses and can defi ne analytic methods that will successfully test them. Using 
power analysis (Chapter 19), he can determine the number of subjects or ana-
lytic units needed to obtain a defi nitive answer to your question. He can also 
advise you on various methods for randomization and can create an appropriate 
randomization schedule for your study.

If you do not involve a statistician in study design and implementation, you 
may design a futile study, that is, one in which the data cannot answer your 
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research question, even in the hands of a skilled statistician. For instance, you 
might plan to enroll too few subjects to be able to answer your research ques-
tion defi nitively. A competent power analysis will tell you if the sample size is 
suffi cient and may lead you to rethink the whole study.

It is important to realize that input from a statistician can add value at every 
stage of a study, particularly if the optimal methods require more expertise than 
you have to implement and interpret properly. The objective of study design is 
to use no more time and resources than necessary to obtain a valid, useful 
answer to your hypothesis question. In Example 2 above, if you know when 
you are planning the study what your alternatives are regarding choice of ana-
lytic strategies, it may allow you more fl exibility in timing and collecting 
measurements.

A statistician also usually has experience with a wide variety of measurement 
approaches, such as questionnaires and physical measures, and is likely to offer 
useful suggestions during the design and implementation of the data collection 
plan. A statistician often can also advise you on the design of the study database, 
so that the information is easily retrievable for reporting and in a form that can 
be effi ciently accessed by the statistical software.

Example 3

Many therapeutic studies require that the investigators do interim analyses; 
that is, evaluate the data at periodic intervals to determine whether the study 
should be stopped or extended. This type of decision is needed when patients 
exposed to an experimental treatment or on placebo are at risk of adverse events 
or when one treatment might be so superior to the other that no patient should 
be denied the better treatment. Repeated hypothesis tests increase the likelihood 
of obtaining a signifi cant result by chance. When the criterion for signifi cance 
(the type I error rate, α) is adjusted to reduce this likelihood, the power of the 
study is reduced, and the required sample size has to be increased. A statistician 
can help to defi ne an appropriate plan for interim analyses, including adjust-
ments to α and to the sample size, can develop objective criteria for deciding 
whether a study should be stopped, and will know how to do these analyses 
while still preserving the blind.

Once a study starts, a statistician can guide you through the methodological 
implications of alternatives, if an unexpected event requires a change in the 
protocol. For instance, the rates of subject recruitment and retention may not 
match the optimistic assumptions in the funding proposal, or the incidence of 
specifi c outcomes may be much lower or higher than estimated in the power 
analysis. A statistician can help you decide whether to set new targets for 



Working with a Statistician 493

recruiting subjects or may suggest alternate methods to work with the data 
without reducing the validity of the study. For example, during the course of a 
longitudinal study, it may become apparent that too few subjects are willing to 
participate for the full study period. The statistician can help evaluate the con-
sequences of reducing the study period, assuming it is clinically sensible, and 
how to account for changes in the protocol in the analysis.

It is advisable not to wait to consult a statistician after the data have been 
collected. This happens with surprising frequency. Some statisticians might not 
want to bother with a study at that point, as this can be a risky and frustrating 
undertaking—what the great statistical pioneer R. A. Fisher famously character-
ized as asking a statistician “to conduct a post-mortem examination. He may 
perhaps say what the experiment died of ” (1).

If a statistician does agree to work with you at this point, she will fi rst need 
to evaluate the quality of your data, such as completeness, measurement relia-
bility, and conformity with the protocol (e.g., timing of measures). She will 
review in some detail the methods used to assign subjects to treatments, the 
handling of protocol irregularities (e.g., wrong treatment given to a subject), 
and whether events that threaten internal validity, such as unblinding or reas-
signing randomization codes, might have occurred. Finally, the characteristics 
of the data will be taken into account in selecting an appropriate analytic 
method. If she fi nds serious methodological fl aws in the design or conduct of 
the study, she may conclude that there is no point in doing the requested analy-
sis. This can result in thwarted ambitions and disputes about deliverables—one 
reason a good understanding of the scope of work is needed before beginning 
to work with a statistician (see Section 6).

There are other occasions when initiating work with a statistician may be 
too late to serve your needs; for instance, after a paper is returned by journal 
referees with questions about the statistics or requests for additional analyses. 
If the study was well done, possibly with the input of a statistician who is no 
longer on the scene, it may be possible for a newly involved statistician to 
respond satisfactorily to the referee. A more promising situation is when a grant 
application is rejected on statistical grounds—often there is an opportunity to 
resubmit, and the project can be redesigned with input from a statistician. Time 
and opportunity are lost as a result of the late involvement of the statistician, 
but a good, funded study may be still possible.

Another diffi cult situation (from a statistician’s point of view) is a consulta-
tion that starts after investigators fi nd that their data do not support their hypoth-
esis. This is troubling on several counts. First, the data have already been 
thoroughly examined, so any further statistical tests are post hoc to the original 
fi ndings. If the fault lies in the study design or measurement quality, a statisti-
cian will not be able to help. On the other hand, a statistician can help you 
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determine whether it is feasible to resurrect your study. For instance, if the 
sample size is too small, it may be possible to plan a larger study based on the 
learnings from the current one, so that you do not necessarily have to give up 
on your original idea.

4. Collaborator versus Consultant
A statistician may work with you, the client, as either a collaborator or consult-

ant, and may change her role over a series of projects. This distinction may 
seem a bit confusing. Many statisticians refer to themselves as consultants regard-
less of the actual nature of their working relationship with the client. We want to 
distinguish here between 2 levels of involvement and expectations in such rela-
tionships; they lie on a continuum, so the distinction may not always be clear.

A statistician who is a collaborator typically is a full partner in your research. 
She will become familiar with many aspects of your fi eld, may read extensively 
in the literature of your fi eld, will expect to work with you on a study from 
beginning to end, and will maintain an interest in your research even when she 
is not responsible for a specifi c task. If you sought NIH funding for your project, 
this person would be listed in the Key Personnel as a coinvestigator.

Alternatively, a statistician may limit his involvement to serving as a consult-
ant on your study. A consultant typically is someone who is more distant from 
the project, who is responsible for a limited scope of work. He will answer 
questions when asked but is not involved in the study when not performing 
clearly specifi ed tasks. This does not mean that the consultant does not care 
about the success and integrity of a study, but that the time and level of detail 
to which he attends is limited. A consultant could feasibly be located at some 
distance from your research site and is more likely to be paid a fee (for hours 
or days actually worked). A statistician at an institutional consulting center is 
likely to set boundaries that keep your association more a consultation than a 
collaboration, primarily because he has too many clients to serve any one of 
them as an in-depth research partner. Very well-known statisticians, particularly 
those who are recognized authorities in a particular statistical method, are more 
likely to provide limited consulting time on that method than to become involved 
in the ongoing life of a project.

A collaborative relationship takes time to develop. You may fi rst encounter 
a statistician as a consultant who responds to a limited request for help (possibly 
that rejected paper or grant application). As you get to know this person, you 
may fi nd that it is so productive to discuss ideas and plans with him, that it is 
worthwhile to invite the person to become more involved in your research.

5. Roles and Tasks in a Statistical Consulting Relationship
It is important that you understand the role of a statistician and the profes-

sional ethics that guide his work to enjoy a productive, lasting association. 
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Moses and Louis (2) have observed that however the consultation may begin, 
it is crucial that the clinician and statistician consultant “ultimately deal with 
the same problems.” Thus, good communication between the statistician and 
the investigator and his team is critical. Good communication requires that 
both the investigator and the statistician be ready to discuss plans and problems, 
take care that they speak in terms that the other party can understand, and be 
willing to elaborate on content when requested. It is the responsibility of the 
investigator to

 • describe the problem he is studying and indicate what he hopes to accomplish;
 • avoid jargon or provide defi nitions of specialized terminology; and
 • be willing to take a little extra time to elaborate on esoteric principles.

Similarly, the statistician should

 • be ready to listen carefully, to ask questions when necessary;
 • request supplemental material (to read) to consolidate his understanding;
 • explain statistical issues clearly, and avoid or explain statistical jargon; and
 • be willing to take a little time to elaborate on esoteric principles.

It is also necessary that both parties listen to each other and ask questions 
when they don’t understand something.

A second critical ingredient in a successful consulting relationship is mutual 
respect between the investigator and the statistician. The statistician should not 
expect the investigator to know or understand statistical concepts and should 
explain his specialized knowledge in a way that respects the intelligence and 
professionalism of the investigator.

Mutual respect also means that the investigator recognize that the statistician 
is a professional, be willing to listen to his ideas, to accept him as the expert 
on statistical issues, and to honor his ethical boundaries. The investigator should 
not defi ne what the results of an analysis should be and expect the statistician 
to produce them. Accepting this expectation would actually be a violation of 
professional ethics (3) for the statistician. The results of a study are largely 
determined by the study design and execution, with the statistician’s analytic 
expertise serving to reveal what is there. Changes in an analysis plan that appear 
to be directed toward producing a more favorable result for a hypothesis should 
be viewed with concern.

If the statistician is to be part of the project from the beginning, then she 
should be informed of its progress and consulted when problems arise, even 
when they do not appear to directly affect the data or statistical analysis. It also 
means that the statistician should be willing to listen to the ideas of the investiga-
tor on statistical issues, must recognize that there are real constraints in any study 
that limit the use of some statistical methods, and treat all members of the study 
team with respect. Both the statistician and the investigator must recognize that 
each has standards of professional integrity that must be observed.
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5.1. Introductory Meeting(s)

The fi rst meeting with a statistician allows you to present your problem. 
This gives the statistician an opportunity to determine whether she is well 
qualifi ed to advise you on the project and whether she is interested in working 
with you.

5.1.1. Describing the Problem

You should be prepared to briefl y describe the problem, the general plan for 
a project to study it, and what you hope to accomplish. You may not be able 
to give all the details at this meeting, but you should be able to give enough 
information so that the statistician can determine the level of effort and techni-
cal expertise required. In turn, the statistician will probably ask you questions 
to clarify certain points or ask to see pertinent articles that describe the methods 
you are interested in using. You also should be ready to discuss a likely time-
table for the study, allowing adequate time for analysis.

5.1.2. Supplemental Material

If possible, you should bring supplemental material for the statistician to 
review. This might include:

 • Pertinent sections of your proposal, particularly specifi c aims and methods.
 • Schematics or fl owcharts of the process or study fl ow.
 • Preliminary results, such as summary statistics if the study is under way.
 • Published articles that can shed more light on the problem, if any, particularly if 

you think you might want to reproduce a published analysis or conduct a similar 
study on a different population.

 • Articles or pilot data that can be used as a basis for power analysis, when that is 
required.

Frequently, you will fi nd that material you thought would not be of interest to 
the statistician is actually quite useful to give a broader understanding of the 
important issues in your research. It is probably better to err on the side of being 
too inclusive—the statistician can usually sort out the material that will be 
useful.

Frequently, this “fi rst” meeting may be more than 1 meeting. For example, 
you may give the statistician some material to examine and arrange to meet at 
a later date to determine if the consultation should move forward.

5.1.3. Learning About the Statistician

If you have not worked with this statistician, this is time to learn about 
her credentials and experience and see if it seems likely you can work well 
together. The more that hangs on the project (in terms of effort and cost), the 
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more important it is that the statistician be fully qualifi ed by training and previ-
ous experience to take responsibility for the statistical aspects of the study. A 
metaphor that we like is to think of the data analysis as a funnel through which 
everything you’ve put into the study must pass in order to attain the dual goals 
of fi nding out what the study showed and communicating this information to the 
scientifi c community. If you do not have good statistical advice or services, you 
may fi nd that the study does not answer your question or is unpublishable.

If you are working with an independent consultant, you should obtain the 
statistician’s CV and look for evidence of appropriate technical training (e.g., 
advanced degree(s) in statistics, biostatistics, or a related quantitative disci-
pline). When working in an academic environment, you can generally be 
assured that the statistician has these qualifi cations. Regardless of context, you 
should look for relevant consulting training or experience, because statisticians 
vary substantially in areas of expertise. Finally, look for evidence of successful 
collaborations and consultations—current employment is no guarantee that 
these occur regularly. An excellent indicator of successful collaboration is a 
series of journal articles with a team of investigators, obvious products of 
research they have worked on together. If you are considering collaborating 
with a less experienced statistician, investigate who the person’s mentors are 
and whether they will be a resource for this person during the project.

5.2. Specifi c Tasks

If you and the statistician decide to work together, this is the point at which 
tasks and expectations for the project and for your professional association 
should be agreed upon. Sometimes the actual tasks that you want the statistician 
to complete can be defi ned at the fi rst meeting. Subsequent meetings will usually 
be necessary to fi nalize the plans, review progress, and discuss results.

Tasks a collaborating statistician is likely to accept responsibility for are 
described in Table 1. A consulting statistician (as opposed to collaborating),
might be involved in only 1 or 2 of these tasks; for instance, advising on a 
particular aspect of the data analysis. It should not be taken for granted that she 
would be available to participate in paper writing or to respond to reviewers. 
The extent of involvement for which a consultant will be paid should be 
specifi ed.

5.3. Ongoing Process

As the study progresses, the statistician will probably attend a number of 
project meetings, particularly during planning and implementation. When the 
statistician is involved during the study, it is important to review milestones 
and discuss problems and unforeseen events. Sometimes the realities of study 
implementation may require changes in the design that will require modifi cation 



Table 1
Activities and Tasks That a Statistician Might Do

Activity Tasks

Study design and • Negotiate wording of testable hypotheses and associated
 proposal  primary aims.
 development •  Suggest a study design that is optimal in usefulness and 

effi ciency in obtaining data for testing the hypothesis.
•  Evaluate literature on planned measures for adequate 

evidence of reliability and validity.
•  Determine the needed sample size or estimated power (if 

sample size is fi xed) for the planned design and primary 
measure(s), and write this up.

• Write a description of the randomization scheme.
• Write the statistical analysis plan for the protocol.
•  Respond to relevant parts of a critique by reviewers of the 

protocol.
Implementation and • Create the randomization scheme, which may involve a
 study conduct   static sequence of codes or a software routine for dynamic 

allocation.
•  Collaborate on implementing a process of enrolling and 

randomizing study participants that meets feasibility and 
integrity needs.

•  Review proposed data collection instruments and other 
measures for reliability, validity, and suitability for the 
planned data analysis.

•  Establish coding rules with data entry staff, such as handling 
of missing data and invalid responses on questionnaires.

•  Participate in meetings of an advisory committee or data 
safety monitoring board.

•  Respond to questions about methodology, including protocol 
irregularities and changes.

Data management • Specify/design the data management system (for manual
 (if there is no  data entry and/or storage of data).
 programmer • Train database personnel in use of the system (unless this is
 associated with  a supporting department task).
 the project) •  Set up a tracking/audit system for monitoring participant 

fl ow and data collection.
Data analysis • Audit data for completeness and validity.

•  Plan, direct (or carry out), interpret, and report any interim
 analysis, and advise on needed project changes.
•  Plan, direct (or carry out), interpret, and report the fi nal data 

analysis.
•  Present and explain analytic results to coinvestigators and 

project team.
Presentation/ • Design and direct (or carry out) preparation of tables and 
 publication  graphs.

•  Collaborate in writing papers, abstracts, presentations.
•  Review data accuracy and interpretation of inferential 

statistics in all reports of study methods and results.
•  Respond to journal referees with written comments and/or 

additional analyses or data.
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of the analysis plan. It is not unusual for the study to take longer than expected, 
and this should be addressed as soon as possible to allow everyone to plan his 
or her time accordingly. As with the fi rst meeting, good communication and 
trust is key to the success of the consultation.

Toward the end of a study, the statistician is likely to want meetings to 
develop publication plans and establish priorities for completion of planned 
analyses. As results are obtained, he will naturally want to talk about interpreta-
tion of the results and potential post hoc questions raised by the fi ndings.

6. Business and Professional Arrangements
6.1. Expectations Regarding Payment for Statistical Services

In most cases, a statistician is paid for his services on a project. Some stat-
isticians will not require or cannot accept payment, such as a postdoctoral 
fellow, a government employee, one who is salaried to provide statistical advice 
(e.g., in a university consulting center), or one who is willing to do pro bono
work. Some institutions provide some support for study design and protocol 
development through funded centers, such as a General Clinical Research 
Center (GCRC) or a Cancer Center, through the statistics department or other 
institutional resources. Other statisticians may be willing to participate in pro-
posal development “on spec” and share the risk of seeking funding.

6.2. What Costs Are Included?

What is covered by a fi nancial agreement depends both on the setting in 
which you are both working and on negotiations about tasks the statistician will 
be responsible for. If you are both salaried and working in the same institution, 
this arrangement may be as simple as agreeing on a percent of full-time salary 
that your project will cover in the institution’s payroll budget. It is still useful 
to be explicit about what aspects of the project will be the direct responsibility 
of the statistician and what might be covered by other staff in the institution, 
such as a programmer or a statistical analyst. Section 5.2 lists the most common 
tasks that the statistician or an alternate staff member might be expected to 
perform and that will be the basis for estimating the time needed to complete 
project tasks.

If the statistician is a freelance consultant or will be working with you under 
a subcontract with another institution (say, a statistical consulting fi rm), you 
should ask the statistician to develop a cost proposal. Statisticians vary quite a 
bit in what they include in such a proposal (4). Some may propose a strictly 
time-based method of charging, that is, hours or days of direct project activity, 
whereas others may propose time plus costs. What is covered by a time-based 
rate also can vary quite a bit. More sophisticated or experienced statistical 
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consultants are aware that their consulting income must cover not only direct 
time to complete an analysis but also indirect costs such as benefi ts, operating 
costs (equipment depreciation, software, offi ce supplies), “downtime” between 
projects, continuing education, professional books and journals, and travel time. 
These indirect costs may or may not be explicit in the rate quoted and may be 
included even when the statistician is in the same institution.

It is important to have a list of tasks (“deliverables”) in the cost proposal, 
so that you can be sure you and the statistician have the same understanding 
about what will be done and what contingencies are covered by the cost pro-
posal. For instance, sometimes data have quality problems that take the statis-
tician’s time to fi gure out and consequently delay or even prevent completing 
the analysis. Will the statistician be paid if the analysis cannot be completed 
because of a fl aw in the study; what are the limits on this? Are there reasonable 
terms for extending or terminating an agreement? Other things that a statisti-
cian might include in project time are learning about the science of the study, 
researching new methodologies, or learning to use new software required for 
this project.

It is important to be realistic about the time involved, including time for 
interpretation and other follow-up such as response to journal referees. We are 
aware of investigators who have consulted a statistician, paid him to do very 
useful but complex analysis, but then been unable to understand the results or 
present them to others because they have no more funds for the statistician. We 
believe this is also a responsibility of the statistician to see that the client allows 
enough time for this.

If funding is coming from a grant, and the funding agency approves the grant 
but reduces the funding, the impact on the consulting agreement needs to be 
discussed with the statistician.

6.3. The Timetable

In addition to a cost agreement, you and the statistician need to have an 
understanding about the timetable for the work. You should set up a schedule 
of approximate milestones and deadlines and an understanding of the payment 
process. This can be fl exible but both you and the statistician need some idea 
of the approximate time frame for the tasks to be completed.

For example, assume a study involves a large data analysis effort after a 
period of data collection. The statistician will have allotted time to work with 
your data when it is expected to be ready, but if you are very late, she may be 
committed to other projects when you are ready. Similarly, if you have com-
pleted your data collection as expected and the timeline includes submitting an 
abstract for a major meeting, then it is reasonable to expect the statistician to 
be available to complete the analysis. One purpose of ongoing meetings during 
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the implementation of the protocol is to make adjustments to the timetable, so 
there are no great surprises when milestones occur early or are missed.

6.4. Flexibility

How much fl exibility is there in a consulting arrangement? Is the estimate 
of time needed an estimate of reasonable time or a fi rm agreement for maximum 
time? There is likely to be more fl exibility in a percentage-of-salary arrange-
ment within a single institution than in a contract with another organization or 
a freelance consultant. Also, the more closely you and the statistician have 
collaborated over time, the more likely she is to allow some elasticity in the 
time estimates.

6.5. Authorship

If you seek a statistician’s assistance in scientifi c research that you intend to 
publish, a collaborating statistician will usually expect to participate in produc-
tion of papers and presentations at the end of a study and to receive coauthorship 
credit commensurate with this effort. The fact that the statistician was paid to 
provide services to the project is no more relevant in his case than for that of 
any other potential coauthor, such as scientists who make a living doing research. 
It is worthwhile to discuss and agree on authorship expectations at the begin-
ning of the consulting relationship. If the statistician contributes substantively 
to the intellectual work of the project (design, analysis, interpretation) and helps 
develop, review, and revise publications, then she has met normal criteria for 
authorship. Frequently, if the statistician is a coauthor on a paper, then she will 
help with responding to reviewers without further charges. The other side of 
this arrangement is that a statistician must agree with the presentation and 
interpretation of results, because there will be a presumption in the scientifi c 
community that she is responsible for these. A statistician may refuse author-
ship if she feels a paper does not represent her professional views.

You may want to offer acknowledgment rather than coauthorship to a stat-
istician that has been only minimally involved. This is usually a welcome 
gesture, but you must ask the statistician for permission fi rst. Not all statisticians 
are comfortable with acknowledgments, so you should not be offended if it is 
refused. The problem is that the statistician who is minimally involved usually 
has not had an opportunity to review the analysis and manuscript in detail 
and so is not willing to be responsible for analysis that was done or modifi ed 
by others.

6.6. Confi dentiality and Security

Every patient’s privacy and confi dentiality of the data must be protected. All 
of the data fi les that are given to the statistician should be stripped of identify-
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ing information, such as name, initials, or Social Security number. If the data 
involve health information, HIPAA (Health Insurance Portability and Account-
ability Act of 1996) regulations may apply. Data that are going outside of the 
institutional environment where they were collected may be subject to a data 
use agreement with the receiving institution.

The statistician must agree also to guard the confi dentiality of the study, 
including if necessary the details of the protocol and the results, at least until 
it is published. The statistician should take the necessary precautions to ensure 
that the data she is using are not accessible to others in her workplace. In addi-
tion, she should take appropriate precautions to ensure the integrity of data, 
such as a fi rewall, password protection, good data-set manipulation practices, 
and regular backups of computer fi les.

After completion of the study, the statistician may ask permission to 
use some of the data or the study design for teaching purposes or as an illustra-
tion in a paper in the statistical literature. This practice can strengthen education 
of other statisticians in practical aspects of consulting and data analysis, but 
you have the right to refuse permission or put restrictions on the use of the 
data.

7. Consulting with More Than One Individual
Sometimes a consulting arrangement involves more that 1 consultant. You 

may require 2 statisticians at the same level to do all the work or a junior statisti-
cian to perform most of the tasks, with a senior person involved only in the more 
complex analyses. The consulting arrangement for a large project may include 
data management specialists to set up and manage the database and clerical staff 
to manage paper forms and enter the data. This arrangement is different from 
that with a single statistician, but the need for understanding, clear goals, and 
well-defi ned business arrangements as described above do not change.

When there are multiple consultants under a single contract, usually 1 indi-
vidual is designated as the team leader, who is responsible for working with 
the client and developing the details of the contract, such as the responsibilities 
of each team member, the deliverables, and the timetable. Usually this person 
is part of the project team (e.g., the senior statistician), but for a large study 
this may be someone whose major role is management of the group rather than 
technical work. The team leader should specify which members of the team 
will be involved in each activity, either by name or by professional category, 
even when only a few individuals compose the team.

The team leader should have the primary responsibility for communication 
with the client. Communications between the client and members of the team 
should keep the team leader well informed (e.g., cc’s on e-mails, joint meetings) 
to avoid confusion and questions about whether the contract terms are being 
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met. We discourage independent communications unless these have the knowl-
edge and permission of the team leader.

The contract for a group of consultants should specify exactly how many 
hours each team member will spend on the contract, either by name or job cat-
egory. For a large team, the team leader may want to include time spent super-
vising staff as well as time spent by all staff on meetings to discuss the project 
and review progress. For a small group, this may be included in the overhead 
charges. These issues should be determined in advance and included in the 
contract.

8. Conclusion
A statistician can contribute many things to a study. Expectations on both 

sides, both general and specifi c, should be defi ned at the beginning of the rela-
tionship. Clear communication and mutual respect on both sides is critical to 
the success of the consulting relationship.
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Design and Analysis of Experiments

Jonathan J. Shuster

Summary
This chapter is primarily devoted to experiments that compare 2 treatments with respect to 

an outcome measure. Six design scenarios are discussed: (a) completely randomized designs 
(treatments are assigned completely at random); (b) randomized block designs (experimental 
units are subdivided into blocks of like subjects, with one subject in each block randomly 
assigned to each treatment); (c) stratifi ed designs (subjects are categorized into subpopulations 
called strata, and within each stratum, a completely randomized design is conducted); 
(d) crossover designs (each subject gets both treatments, but order is completely at random); 
(e) 2 × 2 factorial designs [design can be in any of the formats (a)–(d) but there are 4 not 2 
treatments representing 2 types of treatment interventions, each with 2 levels]; and (f) randomized 
designs with “random” effects. This is much like the stratifi ed design, except there is only 1 
sample, at least conceptually, from the strata. Examples might be litters of laboratory animals, 
surgical practices, or batches of a therapeutic agent. The desire is to make inferences about 
treatments in the population as a whole, not just in the strata that were actually sampled.

Key Words: Completely randomized design; crossover design; optimal allocation; random-
ized block design; stratifi ed design; 2 × 2 factorial design.

1. Introduction
In order to answer important biomedical questions, we conduct investiga-

tions called experiments. Unfortunately, when we repeat the same process, we 
may not get the same exact answer. For example, if one does 2 replicates of a 
quantitative assay of the concentration of calcium in bone samples in mice, the 
2 results will generally differ. Part of the difference may be due to a true 
difference in the concentrations from different bone samples and part of the 
difference due to measurement error. If the bone samples come from different 
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mice, we would expect a larger variation than we would if the bone samples 
came from different bones from the same mouse, and this in turn would be 
expected to have a larger variation than if the 2 samples came from the same 
bone of the same mouse. In experimental design, it is always a good idea to 
identify the sources of variation. In this example, we have variation between 
mice, variation between bones of the same mouse, variation within different 
parts of the same bone of the mouse, and measurement error. These sources 
of variation are an obstacle to our learning the truth about the study questions 
we pose. Accurate answers to study questions can be obtained by using 
designs that control extraneous variations and/or increase the sample size of 
the study.

The theme of this chapter is to look at the comparison of “treatments” under 
various randomized design scenarios. Please refer to Chapter 2 for a discussion 
of observational study designs. In addition, readers are referred to Chapter 17
and Chapter 19 for more details on issues relevant to both randomized and 
observational studies. The major emphasis is on comparing 2 treatments, but 
multiple treatment studies are considered. The major topics are (a) completely 
randomized designs, (b) randomized block designs, (c) stratifi ed designs, (d) 
crossover designs, (e) 2 × 2 factorial designs, and (f) randomized designs with 
random effects.

For additional reading on study design, see Shuster (1), Hinkelmann and 
Kempthorne (2), Cochran and Cox (3), Frigon and Mathews (4), Heath (5), and 
Weber and Skillings (6).

The completely randomized design assigns experimental units (research sub-
jects or specimens) at random to 1 of 2 treatments, without regard to any other 
factors about the subject. For 2 treatment studies, the probability of assignment 
is nearly always intended to be 50% assigned to each treatment.

The randomized block design randomizes a block of subjects to treatments, 
typically 1 member of the block per treatment. For example, suppose you wish 
to test for antitumor activity of 2 agents plus a placebo control in mice. Human 
frozen tumor tissues from 12 patients are each split into 3 subsamples, thawed, 
and injected into 36 genetically equivalent laboratory mice, as blocks of 3. 
Within each block of 3 mice, the tumor tissue comes from the same person, 
and 1 is treated with each of the treatments. This design eliminates potential 
random variation caused by differences in individual tissue sources when it 
comes to comparing the treatments. A completely randomized design would 
use tissue from 36 individuals and randomly assign the tissues to treatments. 
Hence, a randomized block design can save precious tissue on the one hand 
while eliminating considerable variation between subjects on the other.

The stratifi ed design can give some of the benefi ts of randomized block 
designs but can be almost as simple to conduct as completely randomized 
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designs. Subpopulations (strata) are defi ned, and approximately equal numbers 
of subjects within each stratum are assigned to each treatment. Stratifi ed designs 
are very effective in laboratory research where observations are done in batches 
(strata) over a relatively long period of time. If the treatment assignments are 
balanced within each batch, good control over the batch-to-batch variation and 
good control over the impact of changes in support personnel over time are 
achieved.

The crossover design can be an effi cient method to study a biomedical ques-
tion. The idea is to expose research subjects to both treatments in random order, 
with a washout in between. For example, if one wishes to study the cholesterol-
lowering effect of a food additive in mice, one could randomly assign mice to 
the additive and to no additive in random order, controlling for other aspects 
of the diet. A washout segment between the 2 treatment periods would be rec-
ommended. If feasible, this design will get considerably better than 2 for 1, in 
terms of animals required versus a completely randomized design. Not only 
does each animal give 2 observations, but it does a better job of controlling a 
major source of variation, namely that between animals, because each serves 
as its own control in a crossover design.

One downside of a crossover design occurs when there is treatment by period 
interaction (crossover effects). If the true target treatment difference is depen-
dent upon the order of the treatments, then the crossover design will estimate 
a population parameter that differs from the one estimated by the completely 
randomized design. In addition, there may be practical reasons not to conduct 
a crossover design, including end points that take a long time to collect or higher 
rates of dropout expected in a crossover design compared with a completely 
randomized design. Although one may legitimately think of the design as a 
special case of a randomized block design, to do so would discard vital infor-
mation about the order of treatment assignment.

The 2 × 2 factorial design can basically be viewed as conducting 2 studies 
at the same time. They can be grafted onto completely randomized designs, 
randomized block designs, or even a mixture of a completely randomized 
design with a crossover design (some would call this design a “split plot,” as 
borrowed from agriculture, not borrowed from a great novelist). For example, 
in the Physician’s Heart Study (7), subjects were assigned to either aspirin or 
placebo as well as carotene or placebo to study protective effects against car-
diovascular disease and cancer, respectively. Twenty-fi ve percent were assigned 
to each of the 4 treatment scenarios. These designs are attractive to many sci-
entists because with the expense of running clinical trials and experimental 
studies with animals, they afford the opportunity to answer 2 questions for the 
price of 1. However, the results can be confusing if the effect size of one factor 
is highly dependent upon which other factor the individual subject was assigned 
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to (interaction between the treatments). The physician study seems ideal for 
this, because the interventions targeted different medical problems. When the 
2 interventions target the same medical problem, the best experimental question 
may be more complicated than simply asking if the 2 treatments within each 
factor differ. It may also be about whether 2 active treatments are better than 
1. The ISIS II Study (8) studied 2 clot-busting techniques (aspirin and strepto-
kinase) in patients hospitalized for myocardial infarction. One might expect an 
interaction, as the 2 treatments target similar medical mechanisms. A key ques-
tion, in addition to the effi cacy of each therapy, might be, “Is the combination 
therapy better than either monotherapy?”

The randomized design with random effects can be used in multicenter surgi-
cal trials or in the laboratory where a design issue might be how many clusters 
(e.g., physician practices, litters, or divisible tissue specimens) do we utilize 
and how many sampling units within the cluster do we employ? The study is 
planned for each tissue sample cluster putting an equal number of aliquots
(sampling units extracted from the tissue sample) on each of the 2 treatments, 
with the tissue samples forming, at least in concept, a random sample from a 
target population of hypothetical tissue donors that could participate.

Limitations of the Chapter

This chapter will be confi ned to single-stage designs; that is, the methods 
have no allowance for interim decision-making. However, most of these designs 
can be incorporated into multistage designs called group sequential designs by 
using the methods of this chapter in conjunction with software such as EaST 
(9). In addition, the outcome measures considered herein will be restricted 
to quantitative or binary outcomes. Censored survival outcomes are not part 
of this chapter. For the most part, we shall concentrate on a single outcome 
variable. In our design considerations, we shall handle multivariate outcome 
data via a Bonferroni bound, rather than by a formal multivariate analysis.

2. The Completely Randomized Design
Generally, the design calls for a sample size of N subjects, half randomly 

assigned to each treatment without regard to any other factors. The value of N is 
obtained from a power analysis or a sample size calculation (as described in 
Chapter 19) to obtain a desired sensitivity to a given difference. If the 2 treat-
ments are designated as A and B, the actual treatment assignment represents an 
N letter “word” of As and Bs with each word having the same probability of 
occurring. For example, if N = 4, one of the following six assignments is drawn: 
AABB, ABAB, ABBA, BAAB, BABA, BBAA. Say the actual draw was ABBA.
The fi rst subject receives A, the second B, the third B, and the fourth A.



Design and Analysis of Experiments 239

2.1. Permutational Basis of Inference

In order to calculate a P value for a completely randomized design, one can 
consider the null hypothesis that there is no true target population treatment 
effect, and that the subject outcomes are predestined. One must select a statistic 
before collecting the data, such as the absolute difference between the sample 
means, and calculate the P value as the answer to the following question: If we 
went through all possible rerandomizations of the subjects, half assigned to 
each treatment, what fraction of these rerandomizations will have the absolute 
difference in means at least as large as that observed? This makes sense, 
because the larger the actual observed difference between the sample means, 
the more confi dence one might have that indeed the population means are dif-
ferent. To actually do this in practice is feasible only for relatively small studies. 
For example, if N is as small as 20 (10 assigned to each treatment), there are 
184,756 different assignments (20 letter words with 10 As and 10 Bs). Ran-
domization tests can legitimately be done by sampling the reruns, rather than 
doing all. For example, we can take a sample of say 9999 rerandomizations 
(taken with replacement as tracking those already done is more trouble than it 
is worth), and see how the actual result stacks up among the 10,000 randomiza-
tions including the actual one. The P value is defi ned as the fraction among this 
10,000 (including the actual one) that is at least as large as that observed. Not 
only is this a good approximation to the test that looks at this exhaustively, but 
also it is a legitimate permutation test in its own right. If indeed the null hypo-
thesis is true, then, for example, there is less than a 5% chance that the P value 
is below 0.05. (The degree less depends on the probability of tying the observed 
value. In a continuous data situation, this chance is virtually nil.) This method 
is nonparametric, valid whatever the underlying true null distribution is. Some 
practitioners convert the data to ranks. The test that does this is called the 
Wilcoxon–Mann–Whitney test (10), which can be analyzed with exact methods 
via StatXact (11).

2.2. Parametric Basis of Inference: Student’s t-Test

Strictly speaking, Student’s t-test applies to the completely randomized 
design where the target population has a normal distribution under each treat-
ment, and the target population standard deviations are the same for both treat-
ments. However, it is also a large sample approximation to the permutational 
test on the means cited above. In this author’s experience, the t-test, with modest 
sample sizes as low as 15 per group, gives results very close to the permuta-
tional tests except in the presence of outliers (observations “far” from the center 
of the data). See Chapter 4 and Chapter 7 for alternate developments of the 
t-test.



240 Shuster

To perform this test, one computes the following statistics:
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where i represents the ith subject for treatment j, j = 1 or 2 for treatment 1 or 
2, and nj is the sample size for treatment j. This formula also applies when there 
are more than 2 treatments. The variance is estimated as
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where N is the total sample size and K is the number of treatments (K = 2 in 
the classical t-test, but Equation 1 can be used in multitreatment settings with 
K = 3, 4, or 5).

The t-statistic is defi ned as:

t
x x

=
−2 1

SE
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where the standard error for the difference (SE) satisfi es:

SE = +s
n n

1 1

1 2

.  (3)

The SAS procedure PROC TTEST performs the calculation, provided one 
uses the “Equal Variance” output. Alternately, one can use the central t-distri-
bution with N − 2 degrees of freedom to obtain the P value. For the 2-sided 
test, the P value is given by 2 × P (tn−2 ≤ −|t|) for 2 samples and 2 × P (tN−K ≤
−|t|) for an unadjusted t-test to compare 2 treatments in a K-sample experiment. 
Here, tdf represents the random variable with a central t-distribution with degrees 
of freedom d.f. (see Chapter 7 for a discussion).

2.3. Large Sample Inference

When the sample sizes are large (usually n > 30), it is recommended that the 
unpooled version of the standard error be employed and that the P value be 
defi ned by the normal distribution, rather than the t-distribution. Defi ne
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and let
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Note that if the 2 sample sizes are equal, SEu and SE as defi ned in Equation
3 are identical and hence t = z when the sample sizes are equal. The 2-sided P
value is defi ned as 2 × P (Z ≤ −|z|), where Z is a standard normal random 
variable.

For large samples, the advantage of the use of z over t is that it does not 
require the assumption of equal population variances to be a valid test for the 
difference in means. For large samples, neither the t-test nor the z-test require 
that the populations be normally distributed to be a valid test. The t-test is a 
valid large-sample test for equal populations, as under equal populations, the 
variances are indeed equal. Furthermore, it represents a large-sample approxi-
mation to the permutation test described above.

2.4. Allocation of the Sample to the Two Treatments: Is 50-50 Best?

Applied researchers often ask if the samples for the completely randomized 
design should be allocated 50-50 to the 2 treatments. The evasive answer is, 
“That depends.” Here are the major considerations:

 1. Is the cost of sampling approximately equal for the two “treatments”? If no, over-
sample from the less expensive treatment.

 2. Is there substantial anticipated difference in the 2 population variances? If yes, 
oversample from the more variable population.

 3. Are there ancillary questions within 1 of the treatment groups? For example, if a 
new drug is being tested against a standard, they may wish to allocate more to the 
new drug to get more safety data. If yes, oversample from that group.

 4. Is one treatment expected to be more effi cacious than the other? This one is sticky, 
because if you are really convinced one is better, you need to question the ethics 
of the study in the fi rst place. But there are situations where the pharmaceutical 
industry is required to study a drug against a placebo, even when there is a known 
effective control. If yes, oversample from the active treatment.

Consider the fi rst 2 questions above. We can optimize the sample size under 
the following assumptions:
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 1. The population variances are s 2
1 and s 2

2 for treatments 1 and 2.
 2. The costs for each sampling unit are C1 and C2 for treatments 1 and 2.
 3. The planning difference for the two treatment means is ∆ = m2 − m1.
 4. The study is planned for a type I error of a (2-sided) and power of 1 − b, where 

b is the type II error.

The variance of x̄2 − x̄1 is s 2
1/n1 + s 2

2/n2, where n1 and n2 are the sample sizes. 
If we denote the total sample size by n = n1 + n2 and set q = n1/n and 1 − q =
n2/n, it can be shown [see Section A130 of Shuster (12)], that the required total 
sample size satisfi es:

n
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where zγ is the 100(1 − γ) percentile of the standard normal distribution. Please 
see Chapter 19 for an in-depth discussion of power. Values of za/2 to utilize 
for univariate and up to 4-dimensional multivariate analysis using Bonferroni 
bound appear in Table 1. Use zb = 0.842 for 80% power.

To minimize the total cost C = n[qC1 + (1 − q)C2], we set

θ θ σ
σ σ

= =
+

opt
C

C C
1 2
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If the costs are equal and the anticipated standard deviations are equal, then 
the optimal allocation is 50-50.

Two designs can be compared by comparing the relative effi ciency of the 
two. The relative effi ciency of 2 designs is the ratio of sample sizes required 
to achieve a given precision. It can also be considered as the inverse of the 
ratios of the variances for a given cost.

Example 1

Equal sampling costs but unequal variance. The costs are proportional to 
the total sample size, and hence the relative effi ciency (defi ned as the ratio of 
the sample size required under optimal allocation to the sample size required 
under inverse of the ratio of variances for a fi xed cost) is simply the ratio of

Table 1
Values of za/2 for Use in Equation 7

Dimensions 1 2 3 4

a 0.050 0.05/2 = 0.025 0.05/3 = 0.0167 0.05/4 = 0.0125
za/2 1.96 2.24 2.39 2.50



Design and Analysis of Experiments 243

the n’s from Equation 7. From Equation 8, for equal costs, θ σ
σ σopt =

+
1

1 2

, and

the relative effi ciency is RE
n

n
opt

opt opt

= =
+ −

≤
50 50

2 2

1

2 2 1
1
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. The fact that the

relative effi ciency can be at most 1 means that the optimal sample size can be 
at most the sample size for the 50-50 split. The relative effi ciency for a range 
of variances is given in Table 2. In terms of ratios of variances, for equal costs, 
it takes a very large disparity to make a major difference.

Example 2

Binomial sampling for a rare trait under equal costs. In a recent grant appli-
cation, this author reviewed a plan to allocate observations in a 1 : 2 ratio, 
because the anticipated failure rates were anticipated to be 2% versus 5% so 
the allocation might favor the group with the higher anticipated rate, which will 
have the higher variance. If one plans for this rate to compare the groups at 
a = 0.05 (2-sided) and power of 1 − b = 0.8 (b is the type II error), then the 
following ingredients for Equation 7 need to be used. The detectable difference 
is ∆ = 0.05 − 0.02 = 0.03 (5% minus 2%). Because the variance of a binomial 
random variable is p(1 − p), the anticipated variances are s 2

1 = 0.02 (1 − 0.02) 
= 0.0196 and s 2

2 = 0.05 (1 − 0.05) = 0.0475. Using Equation 8 (equal costs),

θ σ
σ σopt =

+
=

+
=1

1 2

0 0196

0 0196 0 0475
0 39

.

. .
. . The required sample sizes are 1133

(actual with a 1 : 2 allocation to the group anticipated to have a 2% or 5% 
failure rate respectively); 1169 for an equal allocation; or 1116 for the optimal 
allocation presuming equal costs. In short, for binomial experiments, equal 
allocation is close to optimal for equal costs, even in low-probability experi-
ments where the anticipated standard deviations may be markedly different. In 

Table 2
Relative Effi ciencies (RE) of Equal to Optimal 
Allocation for Equal Costs per Sampling Unit

s1/s2 s1
2/s2

2 qopt RE

1 1 0.5 1.00
1.5 2.25 0.6 0.96
2 4 0.667 0.90
3 9 0.75 0.80
4 16 0.80 0.73

For s1/s2 < 1, results can be obtained by reversing 
subscripts.
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the middle of the probability range, the standard deviations are nearly equal. 
For example, 0 7 1 0 7 0 46. ( . ) .− =  while 0 5 1 0 5 0 50. ( . ) .− = . The optimal allo-
cation would be 0.48 : 0.52 in such an experiment, virtually 50-50.

Example 3

A device company wishes to test a new device to control intraocular 
pressure in patients with ocular hypertension. They randomize patients to 2 
treatments: surgery or medication (a beta-blocker). The standard deviation 
for change in pressure (6 months minus baseline) is anticipated to be s = 3 
millimeters mercury (mm Hg). The planning sensitivity is to a difference 
in means of ∆ = 1.0 mm Hg at a = 0.05 (2-sided type I error, za/2 = 1.96) 
and power of 1 − b = 0.8(zb = 0.842). The device company’s research 
costs (payment to its subcontracting ophthalmology service) will be $6200 
for each surgical patient and $2400 for each beta-blocker patient. From 
Equation 8, the optimal allocation is qopt = 0.3835. From Equation 7,

n = + − + =( / . /( . ))( . . )3 0 3835 3 1 0 3835 1 96 0 842

1
299

2 2 2

2
, allocated 115 (38.35%)

to surgery and 184 (61.65% to medication). The total cost for the 
research would be C = 115($6200) + 184($2400) = $1,154,600. Had 
the investigators used an equal allocation, they would have used

n = + − + =( / . /( . ))( . . )3 0 5 3 1 0 5 1 96 0 842

1
283

2 2 2

2
 subjects (say 141 to surgery and

142 to medication). As expected, the sample size is smaller, but the cost would 
be C = 141($6200) + 142($2400) = $1,215,000 ($60,400 higher) for the same 
power.

3. Randomized Block Designs
These designs are excellent tools to get good mileage from limited research 

resources. The basic idea is to match the subjects assigned to the treatments as 
well as possible so that any difference can be attributed to the treatments, and 
not to the luck of the draw in assigning a disproportionate number of good 
actors to one of the treatments. Where feasible, randomized block designs 
get multiple observations from the same subject and the subject serves as its 
own control, thereby reducing extraneous variability. There are also potential 
drawbacks. For example, there may be “sympathetic effects” in ocular studies 
where one eye is treated and the other serves as a control. If the mechanism 
of action (not always well understood) is at least in part through systemic 
effects rather than local effects, both eyes may be affected causing regression 
to the mean. A loss of a real treatment effect, that could have been detected by 
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a completely randomized design, might therefore occur. When using a random-
ized block design, carefully consider whether this design will answer the same 
question as a completely randomized design.

The simplest of all randomized block designs is the matched pair design.
(See Chapter 7 for the paired t-test.) One example might be to utilize 2 labora-
tory mice of the same gender from each of n litters, treating one with an experi-
mental treatment and the other with a standard treatment. This will control for 
genetic variation in the animals.

Let us assume we have n blocks, with each block having 1 subject randomly 
assigned to each treatment. Let yij denote the outcome of the subject in block i
(i = 1,2  .  .  .  , n) treatment j ( j = 1,2). If we denote xi = yi2 − yi1 as the paired 
difference, we can treat this as a single-sample problem, for example testing 
for the mean against a null value of zero using a 2-tailed t-test. Specifi cally, 
defi ne the following:
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The t-statistic (with n − 1 degrees of freedom) is defi ned as 
t x s n nx s= =/( / ) / , which can be compared against the t-distribution with 
n − 1 degrees of freedom.

We shall present the “large sample” size requirements (validated by the 
central limit theorem) for a 2-sided type I error a and power 1 − b (type II error 
b) and compare this to that required by a completely randomized approach. The 
required number of pairs is

n
z zx=
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 (11)

where zg is the upper 100g percentile of the standard normal distribution, s 2
x is 

the target population variance of the paired differences xi, and ∆ is the planning 
difference from zero of the population mean xi under the alternative hypothesis. 
In contrast, the sample size required for a completely randomized design with 
equal sample sizes (Equation 7), assuming the effect size would be the same 
in either design, would be
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subjects.

Example 4

An investigator has the choice of conducting a study on 2 femurs of the same 
rat or as a completely randomized design. She is willing to assume that the 
anticipated effect size (∆) would be the same in either design, and sy1 = sy2 =
sy. Based on elementary analysis of linear combinations of random variables, 
it can be shown that

σ σ ρx Y= −2 1( )  (13)

where r is the correlation between yi1 and yi2. A positive correlation would be 
expected, because an animal whose measure is higher than expected on one 
treatment tends to be higher than expected on the other. For example, the animal 
may tend to have a high mineral content in its bones, which would affect both 
femurs. A conservative planning value for r, absent pilot data, might be 
r = 0.5. (If in reality it is higher, we will have overestimated our sample-size 
needs.) This means that knowledge of the outcome of treatment 1 explains r2,
or just 25% of the variance of treatment 2. Under this planning scenario (r =
0.5), we use Equation 13 to obtain sy1 = sy2 = sx. If a completely randomized 
study required 400 animals (400 assays), the randomized block study needs 
only 100 animals (200 assays) to get the same power. Under the worst-case 
scenario, r = 0 (there is no matching effect), the randomized block study would 
require 200 animals (400 assays). Also note that in the equal standard deviation 
case, 100r represents the percentage reduction in sample size of a randomized 
block design (matched pairs) over the corresponding completely randomized 
design (which can be thought of as having r = 0).

4. Stratifi ed Designs
Operationally, we think of the target population as subdivided into sub-

populations (strata), and independent, completely randomized substudies are 
conducted within each stratum, with the combined results of these substudies 
answering the primary study questions. For more on estimates from stratifi ed 
studies, see Chapter 5 of Cochran (13).

As an example, you want to test the impact of an experimental antibiotic 
against a standard antibiotic in mice challenged by a strain of bacterium. You 
worry that there may be a different response according to gender, but that the 
overall mean effect is of interest. A completely randomized design might result 
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in unequal proportions of females (and males) in the 2 treatment groups. By 
stratifying the study by gender, the randomization will ensure that the propor-
tion of females (and males) will be the same within each treatment group. We 
shall demonstrate that this will lead to a more effi cient study design than a 
completely randomized design where gender is ignored.

The following notation will be utilized. There will be 2 treatments labeled 
j = 1,2 and K strata labeled k = 1,2,  .  .  .  , K. The probability that a random 
member of the population falls in stratum k will be denoted as Wk.

For treatment j and stratum k, the mean and variance will be denoted by mjk

and s 2
jk. For the total population, the mean and variance are
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k
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Within stratum k, denote the sample mean and variance for each treatment 
by
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The stratifi ed estimates of treatment means are
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We now consider two competing designs.

 (A) Assign a total of n patients to each treatment, proportionately allocated to each 
stratum, njk = nWk (for both treatments). By elementary properties of linear com-
binations of random variables, m*j as defi ned in Equation 16 is unbiased for mj

and has variance
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To compare the 2 treatments, we would utilize the approximate standard 
normality of
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where SE2
j is obtained by substituting s2

jk from Equation 15 for s 2
jk in

Equation 17 to yield SE j k jk
k
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This can be used to produce a confi dence interval for m2 − m1 or for testing 
the null hypothesis that m2 − m1 = 0.

 (B) The alternate design is the completely randomized design comparing the 2 treat-
ments, based on n subjects per treatment and allowing them to fall into the strata 
at random. From the section on completely randomized designs and Equation
14,
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  Note: The stratifi ed study has a smaller standard deviation for each treatment 
unless, for both treatments, there is no variation in mean response between the 
strata.

4.1. How to Plan the Sample Size of a Stratifi ed Study

Method 1: This is the most common approach. Because we rarely know 
enough planning detail within strata, plan the sample size as if it was an unstrati-
fi ed study, knowing the stratifi ed study will have greater power than expected 
from the unstratifi ed study. It is simply a matter of being unable to quantify 
how much greater.

Method 2: Presumes planning values for all stratum means and standard 
deviations are known. First calculate the sample size as if it was an unstratifi ed 
study. Say this requires nu randomized to each treatment. Let us calculate the 
“fudge factor” as the ratio of the variances in Equation 17 and Equation 19:
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Allocate ns = nu × FF subjects to each treatment. (For example, if the unstrati-
fi ed study required 100 subjects per treatment, and FF = 0.8, allocate 80 per 
treatment.) The individual stratum sample sizes would be Wjns per treatment in 
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stratum j and the Wj are the natural stratum weights (proportion of subjects in 
the target population falling in stratum j).

It is the experience of this author that stratifi cation will help power, but rea-
sonable choices as to the large number of extra planning ingredients are almost 
never available at the onset of the study to use method 2. If one uses method
1, one recognizes that stratifi cation is not saving in terms of sample size over 
a completely randomized design, but one is comforted by knowing that the 
power is higher (by an unknown amount) than expected from a non-stratifi ed 
study.

4.2. Poststratifi cation in a Completely Randomized Design

As noted by Peto and others (14), nearly all of the power benefi ts of stratifi ed 
studies can be obtained by analyzing a nonstratifi ed study as if it were a strati-
fi ed study. The key is that the role of Wk is played by W*k = (n1k + n2k)/n, where 
njk is the sample size in group j and stratum k, and n is the total sample size 
allocated to each treatment. Like a truly prospectively assigned stratifi ed study, 
this forces the contribution from each stratum to be the same for both treatments 
and removes the nonstratifi ed study’s tendency to assign differing effective 
weights in a given stratum to the 2 treatments.

Caution on Poststratifi cation: Some investigators will conduct the study as 
a nonstratifi ed study but then subject the study to a large number of exploratory 
analyses to detect imbalance between the arms in various substrata. A corrected 
analysis may or may not be done according to the results of these analyses. If 
you ignore how the decision to do a poststratifi ed analysis was made, you may 
alter the operating characteristics. Poststratifi cation is valid if it is prospectively 
planned as the primary analysis. However, the major conclusions should be 
based on the single primary analysis. Poststratifi ed analyses are welcome sup-
plements that may help to explain any difference or lack thereof.

Comment: We have treated the stratum weights as natural (i.e., in the propor-
tion that exists in the target population). However, there is no reason that this 
is a requirement. For example, one might wish to oversample females in a pre-
dominately male disease. Alternately, you may wish to oversample in a stratum 
that has an excess of anticipated variability than expected in others. If you wish 
to make inference about the natural population, then indeed, stratifi ed studies 
can accomplish this, but the relationship between the Wk and njk have changed 
over what is presented here.

Example 5

This somewhat simplifi ed example compares sample-size requirements for 
a completely randomized design, a stratifi ed design, and randomized block 
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design. Let us consider a population with 2 strata: males and females (50% 
falling into each). Subjects will be randomized to 2 antibiotic treatments: 
A versus B. The planning means and standard deviations are presented in 
Table 3. We will assume 80% power and a 2-sided test at the 5% level.

For a completely randomized study using Equation 7 we have

ncr =
× +

=
4 25 1 96 0 842

15
88

2 2

2

( . . )

with 44 allocated to each treatment. For the stratifi ed study using Equation 20
we have

n ncrstrat = ⎛
⎝

⎞
⎠ =

20

25
56

2

with 14 allocated to each of the 4 treatment by stratum combinations. For the 
randomized block study, matching only on gender, the correlation is calculated 
as follows. Let yiA and yiB denote the responses for members of matched-pair i
on treatments A and B and let xi = yiB − yiA denote the difference. The variance 
of the difference is

s 2
x = s 2

yA + s 2
yB − 2rsyAsyB = 252 + 252 − 2 × 0.36 × 25 × 25 = 800

and the expected difference is ∆ = 30 − 45 = −15. From Equation 11 for a 2-
sided P value of 0.05 and 80% power,

nrandomized block  pairs=
+

=
800 1 96 0 842

15
28

2

2

( . . )

or 56 total subjects.
Both matching and stratifi cation give you the same advantage (36% 

reduction) over a completely randomized design, when only matching on 
gender. If further important matching variables can be introduced, the benefi t 
of matching will be greater. However, the more matching criteria one has, the 

Table 3
Planning Means and Standard Deviations for Example 5

Stratum\treatment A B

Female (50%) Mean = 30 (SD = 20) Mean = 15 (SD = 20)
Male (50%) Mean = 60 (SD = 20) Mean = 45 (SD = 20)
Total Mean = 45 (SD = 25) Mean = 30 (SD = 25)

We also assume that the within-subject correlation is 0.36 between measurements on treatments 
A and B.
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greater the chance that a subject will not be able to be conveniently matched 
to another. 

5. Crossover Designs
Consider a 2-treatment design (A vs. B) where both treatments are given to 

each subject, but the order is determined by a completely randomized design 
(50% allocated to each ordering). Generally, it is advisable to have a washout 
period between the treatment periods to minimize any carryover effects of the 
fi rst period upon the second period. Although there are multitreatment analogs, 
we shall restrict the discussion to a randomized study of 2 treatments. This 
design can be legitimately considered as a randomized block design yielding 
1 sample (matched pair) analysis, as given in Section 3 or Chapter 7. This 
approach ignores potentially useful data on the treatment ordering. We shall 
advocate a 2-sample approach where the dependent variable will be the period 
2 value less the period 1 value irrespective of the treatment ordering, but the 
orderings will be compared via a completely randomized design approach as 
given in Section 2. The estimated treatment effect from this analysis will rep-
resent the average of the treatment difference (B minus A) when A is given 
fi rst and when B is given fi rst.

To illustrate the advantage of overcoming carryover effects, we can model 
the outcome as follows. Let Yij represent the period 2 minus the period 1 dif-
ference for patient i and order j ( j = 1 for A then B and j = 2 for B then A).
The model is parameterized as Yi1 = −m + t + ei1 for j = 1 and Yi2 = m + t + ei2

for j = 2. We assume that the eij are independent, have mean zero, have a 
common standard deviation s (a reasonable assumption for a crossover study), 
and are normally distributed.

Two-sample approach: The 2-sample t-test comparing the Yi1 to the Yi2 is 
the least squares solution for testing the null hypothesis that m = 0. The 2-sample 
t-test is also an approximation to the permutational t-test (nonparametric). See 
Shuster (1) and Section 2 for further details. In summary, m is the main effect 
of treatment, and t is the carryover effect. These may be estimated using simple 
linear regression with Yij as the response and with an independent predictor 
variable X that is −1 when j = 1 and 1 when j = 2. The intercept estimates the 
carryover effect t and the slope term estimates the treatment effect m.

One-sample approach: The most common method of analysis is the 1-

sample approach, which bases the inference on 
Y Y

n

ii ii2 1∑ ∑−
, where n is the

combined sample size. This can be obtained from linear model considerations 
for the same model cited above. Let Xi = −Yi1 (A then B) and Xi = Yi2 (B then 
A). Simply perform a 1-sample t-test and compare the mean of the Xi to zero. 
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Substitution in the linear model for the Xi above yields Xi = m + Zi + ei, where 
Zi are independent binary random variables taking on values +t if the order is 
BA and −t if the order is AB. The +/− each occur with probability 0.5 (assum-
ing 50-50 unconditional randomization to each order AB or BA) and are inde-
pendent of the ei. The ei are ±eij from the 2-sample model and have mean 0 and 
the same common standard deviation s as the eij. Unconditionally, E(Zi) = 0, 
so the sample mean of the Xi is unconditionally unbiased for m. However, con-
ditional on the actual sample sizes, the sample mean is biased unless the sample 
sizes happen to be equal or if t = 0. In reality, a different number may be ran-
domized to each ordering, and when that happens, there will be a different 
number of +t’s and −t’s in the calculation of the sample mean of the Xi’s.

Comparison of the 1- and 2-sample approaches: (1) When there is no car-
ryover effect, the 2 methods are essentially the same. You lose 1 degree of 
freedom for error in the 2-sample analysis. (2) If t is not zero and the sample 
sizes are equal, both methods still provide unbiased estimates of effect size, but 
the 1-sample method overestimates the variance on average. The 1-sample 
estimate of variance has expected value of s 2 + t 2, whereas the 2-sample esti-
mate of variance has expected value s 2. The point estimates match when the 
sample sizes are equal. (3) Perhaps the worst scenario occurs when the sample 
sizes are unequal. Conditional on the actual sample sizes to each ordering, the 
1-sample estimate is biased, unless we are lucky enough to have t = 0.

The 2-sample method prevails. Item (2) above demonstrates superior power 
of the 2-sample method under a non-zero carryover, for equal sample sizes. 
The relative effi ciency of the 2-sample version under equal sample sizes is 
approximately (s 2 + t 2)/s 2. Item (3) tells us that whenever the sample sizes 
assigned to the 2 orderings differ, the point estimate is biased for the 1-sample 
approach, but not for the 2-sample approach. This further will erode the power 
over and above the impact on the variance. Finally, the 1-sample dependent 
variable has a discrete component (±t) and this would violate normality. For 
large samples, that is not a major factor. But the 1-sample method discards 
valuable information and as a consequence suffers with inferior performance. 
Sample size derivations follow the randomized block designs (1-sample 
approach) or completely randomized design (2-sample approach). For more on 
crossover designs, see Jones and Kenward (15) and Senn (16).

6. Two-by-Two Factorial Designs
A 2 × 2 factorial design investigates 2 questions simultaneously in the same 

study. One classical example is the U.S. Physician Study (7). Once the effort 
to study 1 intervention in healthy adults was undertaken, it seemed reasonable 
to introduce a second intervention and get answers to 2 research questions for 
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little more than the cost of each one individually. Physicians were equally ran-
domized to 4 groups (double placebo, aspirin plus placebo carotene, placebo 
aspirin plus carotene, or aspirin plus carotene). The aspirin question dealt with 
preventing heart disease and improving total mortality, while the carotene 
question dealt with reducing cancer incidence. For the purpose of analysis, each 
treatment was compared as if the study was stratifi ed for the companion ques-
tion. The parameter to be estimated for the aspirin effect size was the average 
of (a) the aspirin effect size within placebo carotene and (b) the aspirin effect 
size within carotene. Two-by-two factorial studies allow for the examination 
of an interaction between treatments. This is not possible with separate random-
ized studies.

There are four treatments groups that are shown in Table 4. This type of 
study can be performed using several types of designs including completely 
randomized designs, stratifi ed designs, or randomized block designs. At the 
simplest level, when comparing A1 versus A2 (the main effect of A), one 
can consider B a stratifi cation variable. If 25% of subjects are randomly 
assigned to each cell in Table 4, the comparison asks the question if the mean 
outcome of treatment A1 (averaged over the levels of B) differs from the cor-
responding mean outcome of treatment A2. This is a valid question, whether 
or not there is an interaction between A and B. That is, the mean difference 
between treatments A1 and A2 differ according to whether B1 or B2 was 
assigned.

The major experimental questions, expressed as null hypotheses, that can be 
asked in a 2 × 2 factorial study are

 1. Is there a difference between treatments A1 and A2, stratifi ed for B (main effect 

of A)? The null hypothesis states 
1

2

1

2
011 12 21 22µ µ µ µ+( ) − +( ) = .

 2. Is there a difference between treatments B1 and B2, stratifi ed for A (main effect

of B)? The null hypothesis states 
1

2

1

2
011 21 12 22µ µ µ µ+( ) − +( ) = .

 3. Is there an interaction between A and B? The null hypothesis states (m11 − m12) −
(m21 − m22) = 0.

Table 4
Treatment Assignments (and Target Population 
Means) for a 2 ¥ 2 Factorial Design

Treatments B1 B2

A1 A1B1 (m11) A1B2 (m12)
A2 A2B1 (m21) A2B2 (m22)
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 4. Does A2B2 differ from A1B1? This may be a safety concern where A1B1 are 
both placebo and A2B2 are both active treatments. The null hypothesis states 
m11 − m22 = 0.

 5. Does A2B2 differ from A1B2 and A2B1? This is a multiple comparison of 2 
treatments against a control, per Dunnett (17). This may be an additivity question 
where A1 and B1 are placebos and A2 and B2 are active treatments. Is the com-
bination of both “active” treatments different from only one active treatment? The 
null hypothesis states m12 = m21 = m22.

 6. Does A1B1 differ from A1B2 and A2B1? This is also a multiple comparison of 
the Dunnett type (17). This may be an individual effi cacy question where A1 and 
B1 are placebos and A2 and B2 are active treatments. Is either single agent dif-
ferent from the double placebo? The null hypothesis states m11 = m12 = m21.

As an example, the ISIS II trial (8) randomized patients with a myocardial 
infarction to placebo aspirin versus aspirin (A1 vs. A2) and placebo streptoki-
nase versus streptokinase (B1 vs. B2). Of course, questions 1 and 2 are of 
primary interest. While the study is ongoing, concern over the double placebo 
group is high, and an effective way to monitor this is to compare this group 
to the double drug group (question 4). Further, if effi cacy is established in 
questions 1 and 2, then question 5 becomes very important; namely, is there a 
difference between the group with both active drugs than each monotherapy (1 
active drug and 1 placebo)? The quantitative interaction question (question 3) 
asks whether the effect of aspirin is different depending upon whether strepto-
kinase or placebo streptokinase was used.

In general, the methods for obtaining sample sizes cited above can be utilized 
for 2 × 2 factorial studies for all of the hypotheses except question 3, the inter-
action hypothesis. Although this chapter takes a frequentist approach, an inter-
esting Bayesian approach can be found in Simon and Freedman (18).

7. Randomized Designs with Random Effects
The design situation covered in this section is a 2-treatment study where 

high-cost treatment units can each produce unlimited experimental subunits at 
a relatively low cost. For a fi xed total cost, there is a trade-off between obtain-
ing smaller numbers of the larger units and more subunits per large unit com-
pared with getting more of the larger units, each with fewer of the smaller units. 
Consider the following example. Suppose you wish to compare 2 surgical treat-
ments with respect to a quantitative outcome (e.g., 6-minute walking distance). 
You will recruit surgeons from all over the country to participate, pay for their 
travel to come to a central location for training, and pay them a capitation fee 
for providing data on each patient they treat. It is recognized that the true effect 
size will vary from physician to physician. Each has a target population (or 
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long-term) difference between treatments. The overall goal of the study is to 
assess whether the average effect size in the population of surgeons (of which 
the participants are, at least in concept, a random sample), is greater or less 
than zero. The analysis will be very similar to a meta-analysis [see Hedges and 
Olkin (19), Lipsey and Wilson (20), and Arthur and others (21)], but the design 
has control over how many physicians to recruit and how many patients to 
randomize for each physician. This is an application of a mixed model as 
described in Chapter 11 of this book. See Khuri and others (22) or Chapter 9 
of Cochran (13) for a more detailed look at this topic.

Consider the surgery example described above. The total cost of the study 
is

 C = C1N + 2C2NK (21)

where N is the number of clusters (surgeons), 2K is the number of patients per 
cluster (K planned to be assigned to each treatment), C1 is the cost for recruiting 
and training 1 surgeon, and C2 is the marginal cost of recruiting and treating a 
patient. The response model will be defi ned as

 Xijk = tij + eijk (22)

where tij is the target population mean outcome for surgeon i and treatment j
( j = 1,2), eijk is the random error (assumed independent of the tij) with common 
variance s 2

e, and k = 1,2,  .  .  .  , K represents the patient number within the physi-
cian and treatment. The term s 2

e is known as the within-surgeon variance. The 
target population effect size for physician i is represented by

 gi = ti2 − ti1 (23)

and is estimated by the difference in treatment means for the individual physi-
cian as

γ i i k i k
k

K

K
X X* = −

=
∑1

2 1
1

( ).  (24)

The overall effect size E(gi) is estimated by the sample mean of the g *i as

γ * = −
==

∑∑1
2 1

11NK
X Xi k i k

k

K

i

N

( ).  (25)

We will let s 2
g denote the variance of the gi, which is known as the between-

surgeon variance in effect size. The variance of the effect size g* is

Var
N NK

( ) .γ
σ σγ ε* = +

2 22
 (26)
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Under the cost function in Equation 21, the values that minimize the vari-
ance of the effect size for a given total cost are

K
C

C
=

σ
σ

ε

γ

1

2
 (27)

and

N
C

C C K
=

+1 22
.  (28)

Note that all other things being equal, if within-surgeon to between-surgeon 
variability is high, K, the number of patients per treatment per surgeon, tends 

Table 5
Designs Keeping the Total Cost Under $1,000,000

   Cost (thousands
N K Var (g *) of dollars)

20 30 29.28 1000
21 27 27.94 987
22 25 26.71 990
23 23 25.59 989
24 21 24.57 984
25 20 23.62 1000
26 18 22.77 988
27 17 21.96 999
28 15 21.26 980
29 14 20.57 986
30 13 19.94 990
31 12 19.35 992
32 11 18.82 992
33 10 18.33 990
34  9 17.88 986
35  8 17.49 980
37  7 16.68 999
38  6 16.42 988
40  5 15.84 1000
41  4 15.80 984
43 3 15.63 989
45  2 16.00 990
47  1 18.38 987

N is the number of surgeons, 2K is the number treated per 
surgeon (K on each regimen), and the cost is $20,000 per surgeon 
plus $500 per patient. Var (g *) is the variance of estimate of 
treatment effect. The optimal design is highlighted in boldface.
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to be larger than it would be under a lower ratio. If the relative fi xed cost to 
train a surgeon (C1) is low relative to the fi xed cost per patient (C2), then K
tends to be low. Of course, sample-size numbers have to be rounded to whole 
numbers.

Example 6

A device maker wants to compare its experimental device against a stand-
ard device. Based on a pilot study, the following planning parameters were 
used: C = $1,000,000 (the total cost allocated), C1 = $20,000 (the cost to 
provide travel and hands-on training to a surgeon and data manager), C2 = $500 
(capitation cost for data management per patient), se = 12 (within surgeon 
standard deviation), and sg = 24 (between-surgeon standard deviation of 
effect size). Using Equation 27, K = 3.16, and using Equation 21, N = 43.2. 
With K = 3 and N = 43, Var(g *) = 15.63. Other design choices that keep the 
costs just below or at C = $1,000,000 are given in Table 5, along with variance 
and actual costs. The ratio of variances represent the relative effi ciency for a 
fi xed cost. The curve is rather fl at, in that it takes a substantial variation from 
the optimal choice to make a major impact on the variance. For example, if one 
failed to do these calculations, either analytically or by trial and error as in 
Table 5, and one arbitrarily decided to enroll 20 patients per surgeon, K = 10 
allocated to each treatment, one would need 40 surgeons (not 33) to match the 
precision of the optimal design of 43 surgeons with 6 patients per surgeon 
(K = 3 allocated to each treatment). The cost would escalate by 20% to $1.2 
million.

8. Conclusion
In this chapter, we examined several design strategies that can be deployed 

in randomized experiments. Randomization is the gold standard to obtain fair 
comparisons of competing treatments, because any other form of treatment 
assignment may be associated with selection bias. As noted in this chapter, 
there are many options as to how to design randomized experiments, from the 
simple, completely randomized design to the fairly complex stratifi ed or block 
designs. Simpler designs have the benefi t of being easier to explain to the public 
and are generally easier to conduct than more complex designs. On the other 
hand, when feasible, more complex designs often give more effi cient estimates 
of treatment effects than the simpler ones, either in costs for a given precision 
or in precision for a given cost.
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Analysis of Change

James J. Grady

Summary
When the same subjects or laboratory animals are observed across a set of different conditions 

or over time, we are usually interested in studying change. In these study designs, each subject 
serves as its own control. In this chapter, we consider different ways to assess change over time, 
for example, analyses for evaluating changes from a baseline condition. Study designs and 
analyses for single group studies and studies with two groups are discussed in detail. Examples 
come from published data. Statistical methods used in the examples include paired t-tests and 
analysis of covariance. The use of difference scores is discussed relative to analysis of 
covariance.

Key Words: ANCOVA; baseline values; change scores; difference scores; paired t-test; pre- 
and post scores; rank sum test.

1. Introduction
When the same group of experimental units (i.e., human subjects, laboratory 

animals, etc.) is observed across a set of different conditions or over time, we 
are usually interested in studying change. In these study designs, each subject 
serves as its own control. The different measures can be before and after an 
imposed experimental intervention, or they can be purely observational, such 
as measures made during a baseline period and at later time points. The simplest 
experimental study design of this type is the pretest versus posttest situation, 
where measurements are made before and after a single intervention. A common 
characteristic of this type of design is that every subject experiences the same 
condition or intervention: the study has one group and one intervention. These 
designs can get more complicated by adding more conditions (e.g., several 
doses of a drug) or by adding different groups of subjects (e.g., different age 
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groups). Extensions of these designs lead to repeated measures designs, which 
are described in Chapter 11.

2. The One-Group Study, Pretest and Posttest Design
The data in Table 1 are from Lu and others (1), who studied the effects of 

2 different soy diets (approximately 1 month of soy ingestion with isofl avones, 
followed by 1 month of soy diet without isofl avones) on female hormone levels 
among 8 premenopausal women. The statistical approach to analyze this data 
is the same as for a pre- and posttest design, or a study with baseline measure 
and a single follow-up. The data in Table 1 are average urinary excretion levels 
for 2-hydroxyestrone. The data collected from an experiment involving change 
is typically entered in a spreadsheet in this fashion. Each subject has a row of 
data with a subject identifi er followed by 2 or more columns for data collected 
across time or under different conditions. Notice there is no variable for group 
membership, because all subjects receive both diets and undergo the same 
experimental conditions.

2.1. Graphical Displays and Other Data Summaries

As in most data analyses, a graphical display of change data can relate a 
compelling story about the data. Figure 1 shows perhaps the best way to display 
change data across 2 conditions, or time points. These simple line plots are easy 
to make in Excel and other software. One can quickly see that 6 out of 8 subjects 
had lower values during the diet without isofl avones, and 2 subjects had little 
or no change. These types of line plots, however, can get visually unattractive 
for large data sets.

Table 1
Average Urinary 2-Hydroxyestrone Excretion Levels 
for a One-Group Study, with Two Diets

 With (+) Without (−)
Subject isofl avones* isofl avones*

1 34.2 18.3
2 24.0 18.1
3 20.0 19.2
4 13.1  2.5
5 13.0 12.8
6 12.9  9.0
7 12.8  8.3
8  9.4  8.1

*Expressed as amount excreted (nmol) in 12 hours.
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Another way to summarize the data would be to report the average change. 
For Table 1, the average change in excretion for the 8 women was −5.3 with 
a standard deviation of 5.29. The interpretation of this biological effect is that 
excretion levels of these women were 5.3 units lower on average on the diet 
without isofl avones. The null value is zero, which represents the expected mean 
for “no change.”

2.2. Assessing Statistical Signifi cance

For the urinary excretion data in Table 1, there are two basic approaches for 
assessing statistical signifi cance. The fi rst would be to use a parametric approach, 
which would involve the paired t-test to test the null hypothesis that the mean 
change was equal to zero. The second would be to use nonparametric tests, the 
Wilcoxon signed rank test (also called the Mann-Whitney U test), or the sign 
test. These tests are discussed in Chapter 7. The results are given in Table 2.
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Fig. 1. Excretion levels for each subject.

Table 2
Results of Data from Table 1

Test P value One might report as

Paired t-test 0.0261 0.026 or 0.03
Wilcoxon signed rank test 0.0078 0.008 or P < 0.01
Sign test 0.0078 0.008 or P < 0.01
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Notes
 1. For a small data set, it is sometimes diffi cult to defend the assumptions needed 

for applying a parametric test. For a paired t-test, the main assumption is that the 
difference scores are normally distributed. This makes some analysts favor non-
parametric tests for small data sets, although this generally results in a loss of 
power. On the other hand, the t-test has been shown to be robust, in that it still 
gives valid inference even when the assumptions are not met. It is worth noting 
that some journal reviewers will not accept parametric tests for small data sets.

3. A More Complicated Design: One-Group Study with Baseline and 
Two Follow-Up Times

The next type of design involves a study with a baseline measure and 1 or 
more subsequent measures. The data in Table 3 are measures of mean arterial 
pressure from a study of fl uid therapy in sheep before the study (2), immediately 
after (0 min) and 20 min after a bolus of dopamine. Assume that the main com-
parisons of interest are the extent to which measures at 0 and 20 min vary from 
the prestudy period.

Analysis of this small data set might proceed as follows.

 1. Using a nonparametric approach, test whether there is a time effect across the 3 
time points. This can be accomplished with Friedman’s test, which is a nonpara-
metric test that compares a set of related measures. For this data set, each subject 
has a set of 3 correlated measures. The hypothesis is that the 3 measures at pre-
study, 0 and 20 min have identical effects. The results of Friedman’s test gives P
= 0.003, indicating that there is a difference among the three measures across the 
3 time periods.

 2. Having established that there are differences in the measures across time, use a 
basic parametric or nonparametric test for paired data to compare 0 and 20 min to 
the prestudy measure. Parametric t-test: Compute 2 paired t-tests comparing each 
time point with prestudy. Table 4 indicates that statistical signifi cance might 
depend on whether one makes an alpha correction to account for multiple tests. 

Table 3
Mean Arterial Pressure (mm/Hg) Prestudy, 0 and 
20 Minutes

Sheep Prestudy 0 min 20 min

1 97 152 148
2 86  96 119
3 86  98  94
4 79  97 124
5 94 106 123
6 91  99  95
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Nonparametric Wilcoxon signed rank test: Using a nonparametric approach and 
calculating the Wilcoxon signed rank tests for paired data, comparing each time 
to prestudy. The results are also shown in Table 4.

A more sophisticated approach to these data: It should be noted that if the data 
set was larger, an alternative parametric approach would be to conduct a 
repeated measures analysis of variance (ANOVA) to test for an overall effect 
over time, followed by pairwise comparisons of each time point to the prestudy 
period.

4. Repeated Measures Designs
The data in Table 5 are from the same animal laboratory experiment described 

above in Section 1.3 and represent an extension of the data matrix described 
in Table 3. Analysis of this data is more complicated and falls under the topic 
of repeated measures analysis of variance. Methods of analyses for these data 
are described in Chapter 11.

Table 4
Results from Paired t-Tests and Wilcoxon Signed Rank Tests

P value Adjusted P valuea

Paired t-tests
 (0 min–prestudy) 0.047 0.047 > 0.025, NS
 (20 min–prestudy) 0.015 0.015 < 0.025
Wilcoxon signed rank tests
 (0 min–prestudy) 0.03 0.03 > 0.025, NS
 (20 min–prestudy) 0.03 0.03 > 0.025, NS

aIf an alpha correction of α/2 (i.e., 0.05/2 = 0.025) was applied to account for the 2 pairwise 
tests being conducted, the only signifi cant result to report would be at 20 min via the paired t-test.
Discrepancies between statistical signifi cance tests happen more often with small data sets and 
require thoughtful reporting.

Table 5
Mean Arterial Pressure (mm/Hg)

Sheep Baseline 0 min 20 min 60 min 120 min 180 min

1 97 152 148 119 118  98
2 86  96 119 111 132 177
3 86  98  94  84 118 125
4 79  97 124  99 130 129
5 94 106 123 125 129 132
6 91  99  95 101 105 108
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5. Comparison of Change Among Subgroups in a One-Group Study
Most studies, even with only one overall group, will proceed to compare 

change among subgroups. We will examine approaches to analyzing data 
among subgroups from a 1-group study with a pretest versus posttest design. 
Consider the data set in Table 6. The study design is the same as in Section 2
with average excretion measurements on 2 isofl avone diets: a standard 
diet with isofl avones, followed by a diet without isofl avones. The grouping or 
stratifi cation variable of interest is age, which is categorized as 19 to 25 versus 
26+ years. We have added a column to display the difference scores of the 
2 diets.

The data are displayed in line graphs in Figures 2 and 3. By comparing the 
slopes of the lines between the 2 groups, we notice that the slopes in the 19- to 
25-year-old group are generally steeper than the slopes in the 26 and older 
group, some of which are fl at. This suggests a greater effect in the 19- to 25-
year-old group.

A study with this design often asks three questions:

 1. Did the 19- to 25-year-old group have a signifi cant change between diets?
 2. Did the 26+ year-old group have a signifi cant change between diets?
 3. Were the changes in the 2 groups the same or different?

Table 6
Average Excretion Levels, Two Age Groups, Two Diets

Age group With (+) Without (−)
Subject (years) isofl avones* isofl avones* Difference

 1 19–25 34.2 18.3 15.9
 2 19–25 24.0 18.1 5.9
 3 19–25 20.0 19.2 0.8
 4 19–25 13.1 10.5 2.6
 5 19–25 13.0 12.8 0.2
 6 19–25 12.9  9.0 3.9
 7 19–25 12.8  8.3 4.5
 8 26+ 33.5 32.1 1.4
 9 26+ 29.0 29.0 0
10 26+ 27.0 25.4 1.6
11 26+ 16.5 17.5 −1.0
12 26+ 13.2 12.2 1.0
13 26+ 11.7 12.1 −0.4
14 26+ 12.0 13.5 −1.5

*Expressed as amount excreted (nmol) in 12 hours.
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We will describe 2 general statistical approaches for analyzing this data. The 
fi rst approach involves creating difference scores and using t-tests (or nonpara-
metric alternatives) to compare group mean changes. The second utilizes a 
statistical model called analysis of covariance to evaluate group differences. 
Each method will be demonstrated.

5.1. Analysis Using Tests for Paired Data

Investigators will often test for a diet effect in the 2 groups separately. The 
difference scores in each group can be analyzed with tests for paired data as 
shown in Table 7. Although the excretion levels across the diets are statistically 
signifi cant for the 19- to 25-year-old group and not for the 26+ year-old group, 
this does not formally test whether the average differences in excretion are 
signifi cantly different between the 2 groups. To accomplish that comparison, 
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Table 7
Within Group Tests

 Mean Paired t-test Wilcoxon signed
Age (years) difference P value rank test P value

19 to 25 4.8 0.05 0.02
26+ 0.2 0.74 0.75

Fig. 2. Excretion levels for each subject, age 19 to 25 years.
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we apply a 2-sample t-test to the difference scores. This gives the results shown 
in Table 8. This demonstrates in a formal test that the average change in excre-
tion level was larger in the younger age group compared with the older age 
group (P = 0.04 or P = 0.02).

Note of caution for one group studies: One of the assumptions for the analy-
sis of change scores is that the 2 groups being compared need to have similar 
distributions for pretest values, here the excretion values in the isofl avone-free 
diet. In clinical trials where subjects are randomized to treatment groups, pretest 
values are usually evenly balanced across groups through the randomization 
process. In studies such as this one, however, where grouping factors are 
created after the study design and sample are established, one must be con-
cerned with the balance of pretest values across any created groups. In this 
example, if age was related to baseline excretion levels, it could invalidate the 
results. For example, if women aged 19 to 25 years had lower excretion rates 

Table 8
Between-Group Tests

 Mean  2-sample Wilcoxon
 Age 19  t-test rank sum test

to 25 years Age 26+ years P value P value

Mean difference 4.8 0.2 0.04 0.02
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Fig. 3. Excretion levels for each subject, age 26+ years.
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compared with women aged 26+ at baseline, comparison of change scores could 
lead to spurious results. This dilemma has its basis in the phenomenon known 
as regression to the mean and has been discussed in length by many authors 
(3,4). Subjects with pretest scores greater than the mean will tend to have 
smaller difference scores, and subjects with pretest scores lower than the mean 
will tend to have larger differences scores. As a result, the assessment of change 
in a study with 1 group, by analyzing change in the whole group or in sub-
groups, must proceed with caution.

One quick way to check this assumption is to compare the means and stan-
dard deviations of the pretest, or baseline values for the 2 subgroups. Assess-
ment of this assumption can be diffi cult for small data sets. If the distributions 
appear similar, the analysis of change scores using a 2-sample t-test will most 
likely give valid results. The mean and standard deviations for the 2 age groups 
are given in Table 9 for excretion during the diet with isofl avones. It appears 
that age group is not related to excretion during the diet with isofl avones.

5.2. Analysis of Change Using Analysis of Covariance

Another way to test for differences between the groups for urinary excretion 
after the groups are switched over to the isofl avone-free diet is to use a statisti-
cal modeling approach called analysis of covariance (ANCOVA). Let’s assume 
that diet with fl avones (with isofl avone) is the control or standard diet, and the 
goal is to test if there are differences between the age groups after the subjects 
are switched over to the isofl avone-free diet (without isofl avone). To accom-
plish this, we would fi t a regression model in which the response variable is 
the excretion measure during the isofl avone-free period (i.e., the “second” diet). 
The explanatory variables in the model would be (1) an indicator variable for 
age group (e.g., 1 = 19 to 25, 0 = 26 or older) and (2) a covariate measure 
of excretion measure during the diet with isofl avones (i.e., the “fi rst” diet). 
The model equation for the ANCOVA model to test for an age effect in the 
isofl avone free diet is

Y−ISO = b0 + b1A + b2X,

where A is an indicator variable for “age group” and takes on the values of 1 
or 0; and X is the excretion level during the diet with isofl avones. The results 

Table 9
Excretion (nmol/12 h)During the Diet with Isofl avones

 Mean SD

Age 19 to 25 years 18.6 8.19
Age 26+ years 20.4 9.15
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of the analysis are given in Table 10. The age effect is signifi cant indicating 
that the 2 age groups had different excretion levels once switched over to the 
isofl avone-free diet. The covariate, excretion during the diet with isofl avones, 
is also a signifi cant predictor.

Notes
1. For these data, both the grouping variable age and the covariate excretion during 

the diet with isofl avone were signifi cant (P < 0.01), indicating that the 26+ age group 
had higher levels of urinary excretion compared with the 19- to 25-year-olds, adjust-
ing for excretion values collected during the baseline diet with isofl avone.

2. The analysis of covariance estimate has the advantage of having smaller variance 
than that for change scores, and for this reason it is favored by many statisticians. 
It can be shown that the relative effi ciency in terms of a change score analysis versus 
analysis of covariance, as measured by the ratio of variances is 2(1 + ρ) in favor of 
ANCOVA (5). Despite this, analysis of change scores to assess change remains 
popular, perhaps because it does not require using regression techniques and is easier 
to interpret.

3. There is an underlying assumption that any chosen covariate, whether it is a pre-
measure for the outcome or some other prognostic variable, is at least moderately 
correlated with the outcome variable. The Pearson correlation between excretion 
level on the 2 diets was 0.85, indicating that analysis of covariance is well suited 
for this data set.

4. The analysis of covariance can be inappropriate and lead to spurious results in non-
randomized designs in which the grouping variables are related to the covariate. 
This was summarized by Miller and Chapman (6) recently and by others in the past 
(7,8). For this study, a problem would have arisen if age was correlated with excre-
tion during the diet with isofl avones. This problem arises in studies with nonrandom 
group assignment, such as cohort studies, and can lead to invalid interpretations.

5. Analysis of covariance assumes that the relationship between the response and the 
covariate be the same for the 2 groups being compared. This is sometimes called 
the assumption of parallelism. This gets its name from imagining 2 separate but 
parallel regression lines, one above the other, for the 2 groups being compared. The 

Table 10
Analysis of Covariance Model

Parameter Estimate SE t value P value

b0 Intercept   5.71 2.35   2.42  0.034
b1 Age 19–25 years −5.20 1.63 −3.18  0.009
  Age 26+ years Reference
b2 Excretion + isofl avones   0.71 0.10   7.06 <0.001
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distance between the lines is what is being tested against the null hypothesis of no 
difference. For more on this, see Chapter 8 and Chapter 9.

6. The covariates in ANCOVA may or may not be statistically signifi cant in these 
models. In many ANCOVA models, a baseline measurement serves as the 
covariate.
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Logistic Regression

Todd G. Nick and Kathleen M. Campbell

Summary
The Medical Subject Headings (MeSH) thesaurus used by the National Library of Medicine 

defi nes logistic regression models as “statistical models which describe the relationship between 
a qualitative dependent variable (that is, one which can take only certain discrete values, such 
as the presence or absence of a disease) and an independent variable.” Logistic regression models 
are used to study effects of predictor variables on categorical outcomes and normally the outcome 
is binary, such as presence or absence of disease (e.g., non-Hodgkin’s lymphoma), in which case 
the model is called a binary logistic model. When there are multiple predictors (e.g., risk factors 
and treatments) the model is referred to as a multiple or multivariable logistic regression model 
and is one of the most frequently used statistical model in medical journals. In this chapter, we 
examine both simple and multiple binary logistic regression models and present related issues, 
including interaction, categorical predictor variables, continuous predictor variables, and goodness 
of fi t.

Key Words: Interaction; logit; odds ratio; predictive accuracy; sample size.

1. Introduction
Logistic regression models, which will be explained in this chapter, were 

developed from other seminal works on the analysis of binary data (1–3). The 
Medical Subject Headings (MeSH) thesaurus used by the National Library of 
Medicine for indexing articles for the Medline/PubMED database introduced 
logistic models as a term in 1990. Logistic regression models are defi ned as 
“statistical models which describe the relationship between a qualitative depen-
dent variable (that is, one which can take only certain discrete values, such as 
the presence or absence of a disease) and an independent variable” (4). Synony-
mous terms are logistic regression, logistic models, and logit models.
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Logistic regression models are used to study effects of predictor variables 
on categorical outcomes. Normally, the outcome is binary, such as presence or 
absence of disease (e.g., non–Hodgkin lymphoma), in which case the model is 
called a binary logistic model. When there is only one predictor variable in a 
logistic regression model, the model is referred to as a simple logistic regres-
sion. When there are multiple predictors (e.g., risk factors and treatments), 
including categorical and continuous variables as predictors, the model is 
referred to as a multiple or multivariable logistic regression.

Logistic models are regularly applied when studying the relationships 
between risk factors and the occurrence of disease in epidemiologic studies. 
These models are frequently used in medical journals not specializing in epi-
demiology and public health. Of medical journals with high impact in their 
medical specialty, the most frequently used complex statistical model (models 
that adjust for confounding) is the logistic model (5). The next most frequently 
used models in these high-impact journals are the Cox proportional hazards 
model (6) followed by multiple linear regression. This result is somewhat sur-
prising, because before 1985, no more than 400 papers appeared in the biblio-
graphic database Medline (Medical Literature Analysis and Retrieval System 
Online) using the search term “logistic regression.” However, coinciding with 
the introduction of the procedure LOGIST in the SAS supplemental library 
(later replaced by Proc Logistic in SAS) (7) and other user-friendly statistical 
software that is available today, the frequency of use of logistic regression in 
scientifi c papers has exponentially increased (Fig. 1), thus improving the analy-
sis of data on binary variables.

In this chapter, we examine the most common logistic regression model, 
the binary logistic model. We then describe both the simple and multiple 
binary logistic regression models and present related issues including interac-
tion, categorical predictor variables, continuous predictor variables, and good-
ness of fi t.

2. Example: Effect of TGF-b1 Gene Polymorphism on Renal 
Dysfunction After Liver Transplantation in Children

To illustrate various aspects of modeling a binary variable with a logistic 
regression model, consider the following example involving the effects of a 
particular gene polymorphism on renal dysfunction in children after liver 
transplantation.

Ojo and others (8) demonstrate that by 3 years after transplant, renal failure 
develops in 16.5% of all nonrenal solid organ recipients. Among liver transplant 
recipients, renal failure develops in 13%. The incidence of renal failure increases 
with time since transplant and is also associated with increased age and a 
number of other clinical characteristics.
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To address the possible role of genetic factors on posttransplant renal dys-
function, Baan and others (9) examine the association between renal dysfunc-
tion after heart transplantation and the cytokine transforming growth factor 
(TGF)-b1 codon 10 polymorphism in a predominately male population with a 
mean age of 45 years. An association is found between the presence of the C
allele, in which case the amino acid coded for is proline (Pro), and renal dys-
function at 7 years after transplant. At this locus the major allele is T, and 
leucine (Leu) is the amino acid coded. The patients with the Pro/Pro (CC) or 
Pro/Leu (CT) genotype have more than a fourfold increase in the odds of renal 
dysfunction versus the Leu/Leu (TT) genotype.

To assess the association of the TGF-b1 codon 10 polymorphism with post-
transplant renal dysfunction among children, after controlling for sex and time 
since transplantation, a study involving pediatric liver transplant recipients is 
ongoing. Hypothetical data from this study is presented in Table 1 and is sorted 
by sex, genotype, age, and disease. The data includes 60 children, 50% female, 
ages 5 to 20 years, who received a liver transplant. Renal dysfunction is defi ned 
as a serum creatinine ≥250µmol/L (9) and is presented as a binary outcome. 

Fig. 1. The frequency of papers with logistic models or logistic regression as search 
terms appearing in Medline from 1965 to 2004.
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Time since liver transplantation is measured in years and, in the study sample, 
ranges from 4 to 17 years, with a median of 10 years and lower and upper 
quartiles of 8 and 12 years. The allele frequencies of T and C are 55% and 
45%, respectively. The frequencies of the genotypes are 35% homozygous for 
Leu, 40% heterozygous, and 25% homozygous for Pro. The proportion of sub-
jects with renal dysfunction is given in Table 2. The traits female sex, shorter 

Table 1
Hypothetical Data from 60 Subjects on Sex, Distribution of TGF-b1 Codon 10 
Genotype (Genotype), Time Since Transplant (TST), and Renal Dysfunction 
(Disease)

ID Sex Type TST Disease ID Sex Type TST Disease

 1 Female Leu/Leu  4 Absent 31 Male Leu/Leu  5 Absent
 2 Female Leu/Leu  6 Absent 32 Male Leu/Leu  5 Absent
 3 Female Leu/Leu  7 Absent 33 Male Leu/Leu  7 Absent
 4 Female Leu/Leu  8 Absent 34 Male Leu/Leu  7 Absent
 5 Female Leu/Leu  9 Absent 35 Male Leu/Leu 11 Absent
 6 Female Leu/Leu  9 Absent 36 Male Leu/Leu 11 Present
 7 Female Leu/Leu 10 Present 37 Male Leu/Leu 15 Present
 8 Female Leu/Leu 11 Absent 38 Male Leu/Leu 17 Present
 9 Female Leu/Leu 12 Absent 39 Male Leu/Leu 17 Present
10 Female Leu/Leu 13 Absent 40 Male Leu/Pro  5 Absent
11 Female Leu/Leu 13 Absent 41 Male Leu/Pro  6 Absent
12 Female Leu/Leu 15 Present 42 Male Leu/Pro  7 Absent
13 Female Leu/Pro  4 Absent 43 Male Leu/Pro  8 Present
14 Female Leu/Pro  5 Absent 44 Male Leu/Pro  8 Present
15 Female Leu/Pro  6 Absent 45 Male Leu/Pro  9 Present
16 Female Leu/Pro  8 Absent 46 Male Leu/Pro 10 Present
17 Female Leu/Pro  8 Absent 47 Male Leu/Pro 11 Present
18 Female Leu/Pro  8 Present 48 Male Leu/Pro 12 Absent
19 Female Leu/Pro 10 Absent 49 Male Leu/Pro 12 Present
20 Female Leu/Pro 10 Present 50 Male Leu/Pro 12 Present
21 Female Leu/Pro 10 Present 51 Male Leu/Pro 15 Present
22 Female Leu/Pro 14 Present 52 Male Pro/Pro  4 Absent
23 Female Leu/Pro 16 Present 53 Male Pro/Pro  8 Absent
24 Female Leu/Pro 17 Present 54 Male Pro/Pro  8 Absent
25 Female Pro/Pro  8 Absent 55 Male Pro/Pro  9 Present
26 Female Pro/Pro  8 Present 56 Male Pro/Pro 10 Present
27 Female Pro/Pro  9 Absent 57 Male Pro/Pro 12 Absent
28 Female Pro/Pro 10 Present 58 Male Pro/Pro 13 Absent
29 Female Pro/Pro 11 Present 59 Male Pro/Pro 14 Present
30 Female Pro/Pro 17 Present 60 Male Pro/Pro 17 Present
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time since transplantation, and homozygosity for Leu are associated with less 
renal dysfunction.

3. Measures of Effect for Categorical Outcomes
3.1. Odds and Odds Ratio

The logistic model uses the odds ratio to determine the effect a predictor 
variable has on the outcome variable (10). When there is only 1 predictor vari-
able, the odds ratio is called a crude, or unadjusted, odds ratio. When there are 
at least 2 predictor variables, an adjusted odds ratio quantifi es the effect a pre-
dictor has on an outcome while holding the other predictors constant (11).

An odds ratio (OR) (12) is simply the ratio of 2 odds and is used extensively 
in medical studies as a measure of effect for categorical data. Odds are usually 
expressed in terms of probability of an event. If the probability of an event is 
p, then an odds can be defi ned as p/(1 − p). For example, if the probability of 
an event is 1/3, then the odds ratio of that event is 1 to 2, or 1/2. Odds can be 
converted to probabilities by taking p = odds/(1 + odds). For example, an odds 
of 2 would have 2/(1 + 2) = 0.67 probability of occurring. As probability goes 
from 0 to 1, odds vary from 0 to ∞. An odds less than 1 would have probability 
less than 0.50, and an odds equal to 1 has a probability of 0.50, or 50/50 chance. 
If the odds ratio is 2.0, there is a twofold increase in the odds of an event occur-
ring, or double the odds. To illustrate the calculation of odds and odds ratios, 
examples from the data in Table 1 are provided below. Further discussion of 
odds is given in Chapter 2.

To determine the odds and odds ratio for a binary predictor and outcome vari-
able, a 2 × 2 contingency table can be constructed as in Table 3. To illustrate the 

Table 2
Proportion of Subjects with Renal Dysfunction

Predictor n N % Renal dysfunction

Overall 28 60 47
Sex
 Female 12 30 40
 Male 16 30 53
Time since transplant
 4–8 years  4 24 17
 9–11 years 11 17 65
 12–18 years 13 19 68
Genotype distribution
 Leu/Leu  6 21 29
 Leu/Pro 14 24 58
 Pro/Pro  8 15 53
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calculation, the risk and odds of renal dysfunction overall and separately for 
females and males are computed based on the frequencies in Table 3.

The overall probability, or risk, that a child will have renal dysfunction (RD), 
P(RD), is [(a + c)/n] = 28/60 = 0.467, or 0.47 when rounding to 2 decimal 
places. The odds that a child will have renal dysfunction, odds(RD), is esti-
mated by P(RD)/[1 − P(RD)] = 0.875. Note that rounding in intermediate steps 
of the calculation may lead to slight differences.

To compute an odds ratio, the probability and odds are calculated separately 
for males and females. Females have a risk of having renal disease of 12/30 =
0.40 and males 16/30 = 0.53. These conditional probabilities are typically 
denoted P(RD|Female) and P(RD | Male), respectively. That is, the probabilities 
are computed conditioned on each sex.

The odds of renal dysfunction (RD) given a female child, denoted 
Odds(RD | Female), is expressed as

Odds RD|Female
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Similarly, the odds of RD given a male is expressed as
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The odds of RD given a female is 0.67 (0.67 to 1), or 2 to 3. The odds of having 
RD for males is 1.14, or 1.14 to 1. This is equivalent to saying the odds of RD 
for a male is 8 to 7, which is slightly higher than 1 to 1, or even, odds.

To compare the 2 odds for males and females, an odds ratio is used. Odds 
ratios, denoted OR, are one of many ways to compare 2 groups with a binary 
outcome. The ratio of the 2 odds are calculated, or the formula OR = ad/bc can 
be used. The odds ratio is given by

Table 3
2 × 2 Table Showing Hypothetical Association 
Between Sex and Renal Dysfunction (RD)

 Renal dysfunction

Sex Yes No Total

Male 16 (a) 14 (b) 30 (a + b)
Female 12 (c) 18 (d) 30 (c + d)
Total 28 (a + c) 32 (b + d) 60 (n)
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OR
Odds RD Male

Odds RD Female
= = =

( | )

( | )

.

.
. .

1 143

0 667
1 71

Males are 33% more likely to have RD and, in absolute terms, 13% more males 
have RD. On the other hand, the odds of RD occurring is 71% more for males 
than females.

For large sample sizes, the natural log of the odds ratio is approximately 
normally distributed, and a 95% confi dence interval (CI) can be calculated. The 
natural logarithm of the odds is denoted ln(OR) with standard error, SE[ln(OR)], 
equal to

SE OR .ln( )[ ] = + + +
1 1 1 1

a b c d
 (1)

For the OR above, the SE[ln(OR)] = 0.522. The antilog of a number is 
denoted exp and the 100 × (1 − α)% CI of the OR is then calculated as

exp[ln(OR) ± z1−a/2 × SE[ln(OR)]]

where z1−a/2 is the 100 × (1 − α/2) percentile of the normal distribution. 
Common values for z1−a/2 are 1.645, 1.96, and 2.33 for 90%, 95%, and 99% 
CIs. For example, the 95% CI for the odds of RD for a male compared with a 
female is

95%CI(OR) = exp[ln(1.71) ± 1.96 × 0.522] = exp[0.536 ± 1.023] 
= exp(−0.487, 1.559) = 0.61, 4.75.

The 95% CI of the OR is 0.61 to 4.75. Because the 95% CI includes 1, sta-
tistical signifi cance using the chi-square test would not be achieved. That is, 
there is not suffi cient evidence of an association between sex and RD. An odds 
ratio of 1, the null hypothesis value, would occur if the odds of RD in males 
and females were exactly the same.

Odds ratios are used extensively in medical studies, and their use in molecu-
lar biology is increasing. For example, Slattery and others (13) uses odds ratios 
to describe the associations among a cytochrome P-450 gene (CYP1A1), ciga-
rette smoking, and cancer. The greatest colon cancer risk among men is observed 
for current smokers who have any CYP1A1 variant allele [odds ratio = 2.4; 
95% confi dence interval (CI) = 1.3 to 4.8]. Hishida and others (14) recently 
used logistic regression to determine relationships between polymorphisms 
and non–Hodgkin lymphoma. A possible association between the p53 Pro72 
allele and non–Hodgkin lymphoma in a Japanese population is demonstrated 
(OR = 1.59; 95% CI = 0.99 to 2.57).
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3.2. Relative Risk and Absolute Risk Measures

Although logistic regression uses odds ratios, two other useful statistics that 
measure effects in a 2 × 2 table are the absolute risk reduction (ARR) and rela-
tive risk (RR) statistics. The frequencies in Table 3 are used to illustrate the 
calculations.

The simplest measure is the ARR, which is the difference between the 2 
absolute risks. The ARR for the data in Table 3 is given by

ARR =
+

−
+

= − =
a

a b

c

c d
0 53 0 40 0 13. . . .

The ARR is 0.13, or 13%. That is, females have a 13% increase in absolute 
risk of having renal disease compared with males. The RR is a ratio similar 
to the odds ratio and is sometimes referred to as the risk ratio. The RR is 
given by

RR =
+
+

= =
a a b

c c d

/( )

/( )

.

.
. .

0 53

0 40
1 33

Based on the RR, females are 33% more likely to have renal disease than 
males.

4. Logistic Regression
4.1. Formulating a Model

The OR and the 95% CI may be calculated using a simple logistic regression 
model for a predictor of any type, dichotomous or continuous. Defi ne the 
outcome variable to be Y and let Y = 1 denote the occurrence of an event 
such as renal dysfunction, and let Y = 0 denote no occurrence. Defi ne the pre-
dictor variable to be X1. The subscript 1 is used to generalize when multiple 
predictors are present. Then the logistic model can be stated in terms of the 
probability that the event occurs given the value of the predictor which is 
denoted P(Y = 1 | X1).

The fundamental assumption is that the log of the odds that Y = 1 occurs is 
linearly related to the predictor variable(s) (15). The odds below is defi ned as 
the odds of the event or disease occurring (Y = 1) given the predictor variable, 
X1. This can be written as

log odds[ | ] log
( | )

( | )
,Y X

P Y X

P Y X
X= =

=
− =

⎡
⎣⎢

⎤
⎦⎥

= +1
1

1 1
1

1

1
0 1 1β β  (2)

where b0 is the intercept and b1 is the regression coeffi cient of X1. The coeffi -
cients are on a logarithmic scale, and the log of the odds is known as the logit 
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transformation. From Equation 2, the model is a linear regression model in the 
log odds that Y = 1.

The logistic probability function can then be expressed as

P Y X
X

X

X
( | )

exp ( )

exp

exp
= =

+ − +[ ]
=

+( )
+ +( )

1
1

1 1
1

0 1 1

0 1 1

0 1 1β β
β β

β β
.  (3)

Equation 3 is useful when determining the predicted probability of an occur-
rence of an event given the value of the predictor(s).

4.2. Relationship Between Logit and Probability Scale

To illustrate the relationship between the logit and probability scale, consider 
the relationship between TST and occurrence of renal dysfunction (Fig. 2). The 
relationship is linear on the log odds (logit) scale and S-shaped on the probabil-
ity scale (16). On the probability scale, the logistic function is constrained 
between 0 and 1 and is one of the reasons it is so popular today. As shown in 
the fi gure, in its simplest form the logistic model assumes that TST is linearly 
related to the log odds of RD, the outcome. As time since transplant increases, 
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the probability of renal dysfunction increases as well. When TST is relatively 
short, TST < 8, chance of RD is not likely. As TST increases, chance of RD 
increases and levels off around TST = 16.

4.3. Interpretation of Coeffi cients

The size of the coeffi cient b1 controls the rate of change in the probability 
and can be referred to as the slope. The slope gives the change in the log odds 
for an increase of 1 unit in X1 (e.g., X1 = 1 vs. X1 = 0 or X1 = 21 vs. X1 = 20). 
When the slope is positive, the curve increases from probability 0 to 1, and the 
odds ratio is greater than 1. When the slope is negative, the curve decreases 
from probability 1 to 0 and the odds ratio is less than 1.

The intercept b0 is the log odds when X1 = 0. When there are 1 or more pre-
dictors, b0 is the log odds when all the predictors are at 0 and is often not 
meaningful. For a given value of the slope, b0 controls the location of the curve. 
For a detailed discussion of coeffi cients in a logistic regression model, see 
Dupont (17).

4.4. Odds Ratio

To compare the odds of RD for 2 values of a predictor variable, Equation
3 can be used to construct an odds ratio. For example, to compare the odds of 
RD when X1 = 1 to the odds when X1 = 0, the odds ratio becomes

OR =

= =
− = =

= =
− = =

=
+

P Y X

P Y X
P Y X

P Y X

( | )
( | )

( | )
( | )
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1 1

1 1 1
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1 1 0

1

1

1

1

0β ββ
β

β β β β1

0
0 1 0 1

( )
= + − =

exp( )
exp[( ) ] exp( ).  (4)

The log of the odds ratio is given by ln[exp(b1)] = b1. The coeffi cient, b1, or the 
odds ratio, exp(b1), gives the change in the log odds or ratio of odds for an 
increase of 1 unit in X1.

For the OR above, the 100 × (1 − a)% CI of OR in a logistic regression 
model is written similar to the 100 × (1 − a)% CI for the basic OR above. The 
100 × (1 − a)% CI is given as

100 × (1 − a)%CI = exp[b1 ± z1−a/2 × SE[b1]],

where z1−a/2 is the 100 × (1 − a/2) percentile of the normal distribution. For the 
95% CI, z1 − a/2 = 1.96.

Although the formulas above are complex, the simple relationship 
between b1 and the odds ratio is the main reason why logistic models are 
a proven tool to model relationships between predictors and a categorical 
outcome (18).



Logistic Regression 283

5. Simple Logistic Regression Model
5.1. Results of Fitting a Simple Logistic Regression Model

Output from statistical software packages are consistent in that they give 
coeffi cients (Coef.), standard error of coeffi cients (SE), Wald statistics and 
corresponding P values, and estimated odds ratio with a 95% CI. The Wald 
chi-square statistic is presented below. Some packages give the square root of 
the Wald chi-square statistic, which is referred to as the Wald z-statistic (10).
The relevant null hypothesis is H0 : b1 = 0, which is equivalent to H0 : OR = 1.0, 
where OR is the odds ratio in the population. This can be stated as there is no 
association or relationship between the predictor and the occurrence of the 
outcome.

Using the data in Table 1, the output for a simple logistic regression model 
predicting the occurrence of RD with the continuous predictor TST is given in 
Table 4. The output for a model predicting RD with the dichotomous predictor 
Sex is given in Table 5. From Table 4, TST was signifi cantly associated with 
occurrence of RD (OR 1.54, 95% CI = 1.22 to 1.94; P < 0.001). The odds 
increases 54% for an increase of 1 year in TST. From Table 5, we infer that 
sex was not signifi cantly associated with occurrence of RD (OR 1.71, 95% 
CI = 0.62 to 4.77).

Table 4
Logistic Model Output with TST as a Predictor

     Odds ratio

Predictor Coef. SE Wald P value Estimate 95% CI

Intercept b0 = −4.455 1.205 13.5 <0.001 — — —
TST b1 = 0.432 0.118 13.7 <0.001 1.54 1.22 1.94

Table 5
Logistic Model Output with Sex as a Predictor

     Odds ratio

Predictor Coef. SE Wald P value Estimate 95% CI

Intercept b0 = −0.405 0.373 1.184 0.28 — — —
Male Sexa b1 = 0.539 0.522 1.065 0.30 1.71 0.62 4.77

aCoded 1 for male and 0 for female.
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5.2. Coding Categorical Predictors

5.2.1. Binary Predictor Variable

Males and females are included in the model presented in Table 5 by con-
structing a design (indicator or dummy) variable (X1 = 1 if male; X1 = 0 if 
female). Design variables are used because regression models typically cannot 
handle character strings such as “Male” or “Female.” From Table 5, the odds 
of RD for males is 71% greater than the odds for females. Because unity is 
included in the 95% CI, there is no evidence for an association. Estimates of 
the intercept and slope are b0 = −0.405 and b1 = 0.539. Plugging those values 
into Equation 3 gives

P(Y = 1 | X1 = 1) = 0.53.

That is, a male has a 53% chance of having RD, and this is simply the propor-
tion of males that have RD as shown above. The odds ratio, although given in 
Table 5, can be derived using Equation 4 or from exp(b1) = exp(0.539) = 1.71. 
The 95% CI of the estimated OR is

95%CI = exp[0.539 ± 1.96 × 0.522] = exp(1.562, −0.484) = (0.62, 4.77).

It is important to note that the coeffi cients given in Table 5 for predicting 
RD from sex would change if values other than 0 and 1 were used to encode 
sex. For example, if we switched the values of X1 for males and females the 
coeffi cients would be b0 = 0.134 and b1 = −0.539. Further details are given in 
Hosmer and Lemeshow (18). Regardless of the values used, the estimated prob-
ability of renal disease occurring will remain the same for each sex.

5.2.2. Nominal and Ordinal Predictor Variables

The number of design variables in a model required to represent a nominal 
predictor is 1 less than the number of categories of the predictor. For binary 
predictors, only 1 design variable is needed, and a column of 0s and 1s are 
created. For predictors with more than 2 categories, more design variables are 
required. For example, the TGF-b1 codon 10 polymorphism listed in Table 1
has 3 genotypes. A contingency table is given in Table 6 showing the associa-
tion between genotype and renal dysfunction.

Because there are 3 genotypes, 2 design variables with the values 0 and 1 
are created, and a reference category needs to be selected for comparison pur-
poses to calculate regression coeffi cients and odds ratios. Here, Leu/Leu will 
be the reference. There are several ways to code categorical predictors. The 
most common is the nominal codings for either nominal or ordinal predictors. 
The nominal codings are usually suffi cient for ordinal variables with up to 5 
categories. These codings compare the odds of the reference category to the 
other categories. An alternative for ordinal predictors is to use ordinal codings 



Logistic Regression 285

(19,20). Using ordinal codings allows determination of the amount of change 
occurring from one category to the next. Table 7 applies both coding schemes 
to the TGF-b1 codon 10 polymorphism (Genotype) variable.

To demonstrate the interpretation of regression coeffi cients and odds ratios 
and to compare the coding schemes in Table 7, the genotype variable is used 
alone in a logistic model. Table 8 presents the output using the 2 coding 
schemes. To interpret Table 8 for the nominal codings, we see the estimated 
OR and 95% CI for the fi rst design variable, GT1, is 3.50 (1.01 to 12.18) and 
is statistically signifi cant (P value = 0.05). The odds of RD occurring in a patient 
with genotype Leu/Pro is estimated to be 3.5 times that of a patient with geno-
type Leu/Leu, the reference. Recall that an OR of 1 would imply no association 
between genotype and RD, or equivalent odds for the 2 genotypes being com-
pared. The odds of a patient with genotype Pro/Pro is estimated to be 2.86 times 
that of Leu/Leu (95% CI = 0.71 to 11.44; P value = 0.14). Based on the P value 
= 0.14, there is insuffi cient evidence to conclude that there is a difference 
in the odds for the 2 genotypes. For the ordinal coding scheme, the fi rst 
design variable (GT1) has the same interpretation as that of the nominal coding 
(OR = 3.50, 95% CI = 1.01 to 12.18; P value = 0.05). The interpretation of GT2

is not the same. The coeffi cient and odds ratio compare the second and third 

Table 6
3 × 2 Table Showing Hypothetical Relationship 
Between Genotype and Renal Dysfunction

 Renal dysfunction

Genotype Yes No Total (%)

Leu/Leu  6 15 21 (35%)
Leu/Pro 14 10 24 (40%)
Pro/Pro  8  7 15 (25%)
Total 28 32 60 (100%)

Table 7
Nominal and Ordinal Coding of Design Variables 
for Genotype

 Nominal Ordinal

Genotype GT1 GT2 GT1 GT2

Leu/Leu 0 0 0 0
Leu/Pro 1 0 1 0
Pro/Pro 0 1 1 1
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genotypes, Leu/Pro and Pro/Pro. The odds are 18% less for homozygous Pro 
compared with heterozygous individuals (OR = 0.82, 95% CI = 0.22 to 2.99) 
and is not signifi cant (P value = 0.76). Stated another way, the odds signifi cantly 
increases when Leu/Pro is compared with homozygous Leu but does not sig-
nifi cantly change when Pro/Pro is compared with Leu/Pro.

Note that before coding the categorical predictors, it is important to inspect 
the frequencies of the categories to determine whether a reduction of the catego-
ries is needed (19). For example, there are only 15 patients with genotype Pro/
Pro. Merging this genotype with Leu/Pro would reduce the number of design 
variables to 1 and lead to more precise estimation. In general, it is better to 
merge categories into “similar” groups instead of keeping them separate before 
the analysis phase of the data. Basing the reduction of the genotypes on an 
inspection of the regression modeling is not appropriate and can lead to biased 
models. For categorical predictors, the categories are compared with each other 
depending on the coding scheme applied. For continuous predictors, the odds 
ratio has a different interpretation.

5.3. Continuous Predictor Variables

5.3.1. Interpretation of Odds Ratios

In computer output and subsequently in medical papers, the coeffi cient and 
the odds ratio are presented as the increase (or decrease) in the log odds or odds 
of disease (RD) occurring for a 1-unit increase in the continuous predictor. For 
example, for a 1-unit increase in TST, the log odds of RD increases 0.432 and 
the odds increases 1.54-fold (see Table 4). Although coeffi cients and odds 
ratios are often reported in terms of a 1-unit increase in the predictor variable, 
as in Equation 4, a useful description would be to determine a meaningful 
change in a predictor, such as a 5- or 10-unit change. That is, changing the 
scale of the predictor may aid in interpreting meaningful clinical effects. For 
example, using logistic regression, Ford and others (21) found that after adjust-

Table 8
Coeffi cients and Odds Ratio of Nominal and Ordinal Coding of Design 
Variables

 Nominal Ordinal

 Wald P value OR (95% CI) Wald P value OR (95% CI)

Constant 3.60 0.06 — 3.60 0.06 —
GT1 3.88 0.05 3.50 (1.01, 12.18) 3.88 0.05 3.50 (1.01, 12.18)
GT2 2.20 0.14 2.86 (0.71, 11.44) 0.09 0.76 0.82 (0.22, 2.99)
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ment for covariates, a 10-unit change in the Healthy Eating Index (HEI) reduced 
the odds of an elevated C-reactive protein concentration by 8% (OR = 0.92, 
95% CI = 0.86 to 0.99). If the standard 1-unit change was used for the calcula-
tion, a 1% reduction would have been reported (OR = 0.99, 95% CI = 0.985 to 
0.995). Regardless of the unit-change used in the calculation, statistical signifi -
cance (or insignifi cance) will remain the same. However, by using a clinically 
useful change in the predictor, a more meaningful interpretation of the change 
in odds can be made.

For any c-unit change, the log odds ratio in a predictor X1 is simply cb1 and 
the odds ratio is exp(cb1) (18). A 95% CI for a c-unit change in a predictor X1

is written as

95%CI(OR) = exp[cb1 ± z1−α/2 × cSE[b1]]
= exp[c]exp[b1 ± z1−a/2 × SE[b1]]. (5)

For example, there is a 1.54-fold (95% CI = 1.22 to 1.94) increase in odds for 
a 1-year increase in TST (see Table 4). However, it may be more meaningful 
to compute the increase in the odds for any 2-year increase in TST. The odds 
ratio is calculated as exp(cb1) = exp[2(0.432)] = 2.37. Using Equation 5, the 
95% CI for a 2-year increase in TST is

95%CI(OR) = exp[2(0.432) ± 1.96(2)(0.118)]] 
= exp[0.158, 1.570) = (1.49, 3.77).

Other useful strategies are to use some standardized measure for c, such as 1 
standard deviation or the difference between the outer quartiles (0.25 and 0.75 
quantiles). If the predictor is normally distributed, then standardized logistic 
regression coeffi cients could be used to indicate the effect of a 1-unit standard 
deviation difference in the predictor on the outcome (22). However, we recom-
mend using the change from the outer quartiles as a measure for c, because 
predictors are not always normally distributed. Using the difference in the outer 
quartiles as a measure for c, the odds ratio is called the interquartile range (IQR) 
or half-sample odds ratio (23). For example, the 25th and 75th percentiles of 
TST are 8 and 12. The difference between the quartiles is 4. Let c = 4 and the 
OR is exp[4(0.432)] = 5.6. The 95% CI is 2.2 to 14.2. That is, patients at the 
75th percentile of TST (TST = 12) had a 5.6-fold (95% CI = 2.2 to 14.2) higher 
odds of renal dysfunction compared to those at the 25th percentile (TST = 8). 
Examples on the reporting and interpreting of logistic models and specifi cally 
the half-sample OR can be found in Refs. 24–26.

An alternative is to categorize a continuous predictor and use the nominal 
coding scheme. In fact, of the articles reviewed in epidemiological journals by 
Ottenbacher and others (27), 65% of the 99 articles reviewed that used logistic 
regression only utilized binary predictor variables. Although practiced in the 
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medical literature, we do not recommend categorizing a continuous predictor 
in a logistic regression model unless the number of subjects is large. Categoriz-
ing continuous variables may result in a signifi cant loss of information. In 
addition to Ottenbacher, the guidelines presented by Lang and Secic (28) and 
Bagley and others (29) are helpful.

5.3.2. Relaxing the Linearity Assumption

In logistic regression models, in their simplest form, it is assumed that con-
tinuous or ordinal predictor variables are linearly related to the log odds. If the 
linearity assumption is not relaxed, exploration should be done to ensure con-
formity with the linear gradient (29,30). However, information, or indication 
of, verifying this assumption is usually not provided (27,29). For example, in 
Figure 2, TSA is constrained to be linearly related to the log odds of renal 
dysfunction. To fi t more fl exible curves, nonlinear effects should be allowed 
by using either polynomials or restricted cubic splines (15,31). Polynomials are 
also used in multiple linear regression models as discussed in Chapter 9.
Alternatively, transformations may be made on the predictor (e.g., log) because 
log of the predictor may be linearly related to the log odds. Figure 3 displays 
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the relationship TST has on probability of renal disease. Only small differences 
are seen between the 2 lines. The relationship appears to conform to the linear 
gradient. Nick and Hardin (19) give an example when the relationship does not 
conform to the linear gradient.

Typically, a log transformation may satisfy the linearity assumption. 
However, the transformation that satisfi es the linearity assumption is often not 
known. Polynomials are incorporated in a regression model by including terms 
that are powers of the predictor variable. For example, the polynomial in Figure
3 was created by including TST and TST2 as predictor variables in the model. 
This allowed the linearity assumption to be relaxed.

Splines fi t a wider variety of functions and can allow for threshold effects. 
The number of knots, or infl ection points in the curve, needs to be specifi ed. A 
greater number of knots will result in a regression model that more closely fi ts 
the data. Three knots should be used with samples with less than 30 subjects 
and 4 knots with samples up to 100. Usually 5 knots are suffi cient for large 
samples (10). If splines or polynomials are used, linearity is not assumed on 
the log odds so the odds ratio will depend on the value of the predictor. It is 
then very important to use the half-sample odds ratio to describe the effects the 
predictor has on outcome.

6. Logistic Regression with Multiple Predictors
6.1. Introduction

In Section 5, predictors were related to the occurrence of an event with 
respect to an outcome, but only 1 predictor was handled at a time. It is important 
to demonstrate the handling of many predictors and various different types of 
predictors using multivariable models. When there are multiple predictors and 
a categorical outcome, it is important to examine the predictors simultaneously 
using a multiple logistic regression model. The multiple logistic regression 
coeffi cients and odds ratio are adjusted for the other predictors in the model. 
For example, Hishida and others (14) reported the association of polymor-
phisms and risk of non–Hodgkin lymphoma, adjusted for age and sex. Age and 
sex were included as predictors in their multiple logistic regression models and 
held constant when studying the association of polymorphisms with occurrence 
of lymphoma.

6.2. Model Assuming Additivity

The multivariable model involves a linear combination of the predictors. 
Consider the case of 3 predictor variables, X1, X2, and X3. The log of the odds 
can be represented by

 log odds(Y = 1 | X1, X2, X3) = b0 + b1X1 + b2X2 + b3X3. (6)
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The above model could be used to study the effects that TST and Genotype 
have on occurrence of renal dysfunction, simultaneously. Recall TST is in 
years and there are 3 genotypes (Leu/Leu, Leu/Pro, Pro/Pro). The model is 
written as

 log odds(Y = RD|TST, GT1, GT2) = b0 + b1TST + b2GT1 + b3GT2, (7)

where GT1 and GT2 represent the design variables using the nominal coding 
scheme given in Table 7. Table 9 is output from a standard statistical package 
using TST and Genotype. The standard output determines the coeffi cient for a 
1-unit change as stated above. Therefore, as TST increases 1-year the odds 
increase 1.74-fold (95% CI = 1.30 to 2.33). The design variable GT1 compares 
Leu/Pro with Leu/Leu. Based on the statistics in the row labeled GT1, subjects 
with genotype Leu/Pro have an increase in the odds of renal dysfunction occur-
rence compared with genotype Leu/Pro (OR = 1.54, 95% CI = 1.84 to 83.2). 
Although the confi dence intervals for comparing genotypes are wide and impre-
cise, signifi cant differences are observed for one of the genotype comparisons. 
See Section 6.4.5 for a discussion of sample sizes for logistic regression 
models.

Standard computer output is usually not presented in medical research papers. 
We suggest restructuring Table 9 so a more meaningful change in TST is used 
and the genotype comparisons are clear. For example, a half-sample odds ratio 
is presented for TST. Additionally, we perform a statistical test to assess the 
overall contribution of genotype (which is explained in Section 6.4.1). Table 
10 is a suggested presentation of a multiple logistic regression model. Typi-
cally, only the odds ratio and 95% CI are reported. A prediction formula with 
coeffi cients may be given in text or in a footnote. P values are reported below 
but are expendable if 95% CIs are given. P values are useful for testing the 
contribution of a set of variables as below. Graphical presentations, especially 
on the probability scale, are useful to display important relationships. Figure
4 shows the predicted log odds and probability of renal dysfunction. The basic 

Table 9
Logistic Model Output with Predictors TST and Genotype

 Odds ratio

Predictor Coef. SE Wald P value Estimate 95% CI

Intercept b0 = −7.2 1.92 14.0 <0.001 — — —
TST (per 1-year change) b1 = 0.55 0.15 13.6 <0.001  1.74 1.30 2.33
GT1 b2 = 2.52 0.97  6.7  0.01 12.37 1.84 83.2
GT2 b3 = 1.72 0.98  3.1  0.08  5.56 0.82 37.5
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Table 10
Presenting the Logistic Model with Predictors TST and Genotype

  Odds ratio

Variable P value Estimate 95% CI

TST (per 4-year change)a <0.001  9.1 2.8 29.4
Genotype (reference, Leu/Leu)   0.01b

 Leu/Pro 12.4 1.84 83.2
 Pro/Pro  5.6 0.82 37.5

aComparison for TST is half-sample odds ratio; compares the 0.75 to 0.25 quantile.
bP = 0.01 represents a 2 degree of freedom likelihood ratio (LR) test on genotype.
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assumption in the model is that there is no interaction between the predictors 
and therefore the lines are forced to be parallel on the log odds scale. We 
suggest reporting the probability scale for important relationships.

6.3. Model with Interaction Among Predictors

In its simplest form, an assumption of a multiple logistic regression model 
is that there is no interaction between the predictor variables. Statistical interac-
tion is present when there is nonindependence of the effect of 2 predictors on 
the outcome (32,33). This is referred to as a nonadditive model. That is, the 
effect of a predictor on an outcome does not depend on another predictor. Sta-
tistical interaction is analogous to drug interaction, where the effect of one drug 
is altered by another drug. In epidemiological journals, Ottenbacher and others 
(27) found 61% of the articles they reviewed that used logistic models did not 
report or discuss testing for interactions.

In statistical packages, interaction is included by taking the product of 2 or 
more predictor variables (34). Consider the model in Equation 6 for the predic-
tors X1 and X2, but now allow for interaction between the 2 predictors. The log 
odds can be represented by

log odds(Y = 1|X1, X2) = b0 + b1X1 + b2X2 + b12X1X2,

and holds when the predictors are either continuous or binary. The coeffi cient 
β12 represents the interaction term. A hypothesis test is used to test if the inter-
action coeffi cient is 0 and is illustrated below.

We relax the no interaction assumption given in Equation 7 and allow an 
interaction between genotype and TST. That is, we want to allow for differences 
in occurrence of renal dysfunction among the 3 genotypes at any year since 
transplant. We can determine if there is evidence of complexity due to interac-
tion between genotype and TST. The model is written as

log odds(RD|TST, GT1, GT2) = b0 + b1TST + b2GT1 + b3GT2
+ b12TST × GT1 + b13TST × GT2.

Figure 5 below relaxes the parallelism assumption based on the interaction 
model above and can be compared with the no-interaction model in Equation
7 and plots in Figure 4. That is, we allow for interaction between TST and 
genotype in Figure 5. Comparisons can be made to determine if the effect of 
TST differs across the 3 genotypes. The genotype Pro/Pro appears to be similar 
to Leu/Pro when TST is short, less than 10 years. But for high values of TST, 
greater than 12 years, Pro/Pro has similar occurrence of renal dysfunction as 
Leu/Leu. If lines are more or less parallel, the interaction effect is not likely 
to be signifi cant. See Chapter 10 for a discussion of tests of parallelism in 
ANCOVA.
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6.4. Other Issues with Logistic Regression

6.4.1. Global Test of Model and Testing a Group of Predictors

A simultaneous test of all predictors in a logistic model should be performed 
similar to multiple linear regression as described previously in Chapter 9.
Before proceeding to an individual hypothesis test, a global test of all the pre-
dictors is computed using a likelihood ratio (LR) test. The LR statistic has 
approximately a chi-square distribution with degrees of freedom equal to the 
number of predictors in the model, including all design variables, interaction 
terms, and terms to allow for curvature. For example, a model with TST and 
Genotype that allows for interaction would include 5 degrees of freedom: 1 for 
TST, 2 for design variables for genotype, and 2 for interaction between TST 
and Genotype. Statistical packages call the global test the LR chi-square test 
or Model chi-square test. If the Model chi-square test is signifi cant at the 0.05 
level, then one proceeds to test predictors individually or subsets of predictors 
using Wald or LR tests. For example, the model in Section 6.2 with 3 degrees 
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Fig. 5. Predicted log odds (left) and probability (right) of renal dysfunction for the 
3 genotypes (Leu/Leu, Leu/Pro, Pro/Pro). Statistical interaction is allowed between 
genotype and TST. A formal statistical test of interaction can be made and is discussed 
in Section 6.4.1.
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of freedom (TST, GT1, and GT2) has an LR test chi-square = 30.7 (P value 
< 0.001; 3 d.f.).

LR and Wald tests can also be performed on subsets of variables or pooled 
tests (10). For example, we can perform a pooled test on all terms that involve 
genotype (e.g., GT1 and GT2 as in Table 10). To test the overall genotype 
effect, we can perform a multiple degree of freedom test by removing genotype 
and obtaining the LR test chi-square value. For example, the model with TST 
alone (1 d.f.) has an LR test chi-square = 21.9. The difference between the LR 
chi-square values of the 2 models, 30.7 − 21.9 = 8.8, represents the pooled 
effect of genotype with 2 degrees of freedom. A chi-square = 8.8 with 2 d.f. 
has a P value = 0.012 and this is the P value presented in Table 10 for the 
overall genotype effect. Similarly, if genotype has 4 terms, such as a model 
with interaction (GT1, GT2, GT1 × TST, GT2 × TST), then the difference 
between the LR chi-square values for the overall model and a model with only 
TST would give the overall contribution of genotype with one pooled test.

6.4.2. Assessing Lack of Fit and Infl uential Data

Once allowance is made for suspected nonlinear trends in the continuous 
predictors and interaction effects, infl uential observations should be checked 
and goodness-of-fi t tests performed using standard statistical software. One 
common measure to check for infl uential points is to use the leverage statistic 
(35). Leverage is a measure of the overall infl uence of an observation on the 
coeffi cients. The infl uential observations are determined by plotting the proba-
bility of the event against leverage. Other typical regression diagnostics similar 
to linear regression can be performed as well (18).

Measures of global goodness-of-fi t tests are numerous, but the most common 
are the Pearson chi-square and Hosmer-Lemeshow tests (18). By the defi nition 
of good fi t, the logistic function should be the correct function and no more 
additional terms are needed for nonlinear or interaction effects. However, the 
P value is not appropriate for the Pearson chi-square test because the expected 
frequencies are not large enough. The Hosmer-Lemeshow test is sensitive to 
how its fi xed groups of estimating probabilities are formed. These tests will 
likely not detect interaction effects if present unless the sample size is at least 
500 (36).

Using the no interaction model in Section 6.2 and SPSS statistical software, 
the Hosmer and Lemeshow test has a chi-square = 8.8 (P value = 0.27, 7 degrees 
of freedom). For the interaction model, the test has a chi-square = 4.7 (P value 
= 0.69, 7 degrees of freedom). However, because the sample size is less than 
100 in this hypothetical data set, the goodness-of-fi t test is not very sensitive 
in detecting lack of fi t. Harrell (10) recommends to specify alternative hypo-
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theses, such as nonlinear trends and interaction terms, because they are more 
powerful than goodness-of-fi t tests.

6.4.3. Assessing Predictive Accuracy

The predictive ability of linear regression models is determined by R2, the 
coeffi cient of multiple determination. R2 is a measure of how well an individual 
subject will be predicted from a model. For logistic regression models, many 
discrimination measures are used including R2-type measures, overall rate of 
classifi cation, and the c-statistic. Additionally, the receiver operating character-
istic (ROC) curve may be used and is discussed in Chapter 6.

The c-statistic is related to Somers’ D rank correlation [D = (c − 0.5)/0.5] 
and identical to the area under the ROC curve (23,37). These statistics measure 
the extent to which a model’s predicted probability agrees with the observed 
outcome (e.g., presence or absence of an event). A c-statistic of 0.50 suggests 
no discrimination, <0.70 poor, 0.70 to 0.79 acceptable, 0.80 to 0.89 excellent, 
and at least 0.90 outstanding (18).

R2-type measures include R2 (used for continuous outcomes), R2
N (38), pseudo 

R2, and others (39). For binary outcomes, R2 has a useful interpretation but tends 
to yield low values. Pseudo R2 is common but the maximum value will not 
approach 1.0 in some cases. R2

N can vary from 0 to 1 and is often reported in 
software packages.

Classifi cation tables cross-classify the number of correct outcomes with 
observed outcomes into a 2 × 2 table. The overall probability of correct classi-
fi cation or misclassifi cation is given and is commonly reported in medical 
papers. However, classifi cation tables are not recommended because logistic 
regression is a probabilistic model and is not to be used for estimating the 
occurrence of an event (10,18).

Although Homser and Lemeshow (18) do not recommend reporting R2, we 
agree with Ash and Shwartz (37) and encourage the reporting of both c and R2

statistics for logistic models. See Riester and others (31) for an illustration of 
c-statistics and ROC curves to compare models.

To illustrate the use of discrimination statistics, we use the models without 
and with interaction term in Sections 6.2 and 6.3. The model without interaction 
has a c-statistic = 0.88, Somer’s D = 0.75, and R2

N = 0.54. The model with 
interaction has a c-statistic = 0.88, Somer’s D = 0.76, and R2

N = 0.55. That is, 
very little predictive power is added when the interaction term is included.

In addition to reporting discrimination statistics such as the c-statistic, a 
model should ideally be validated as well. Validation refers to the accuracy of 
a model when applied in new patient samples, but it is usually not reported 
(27,29). There are internal and external procedures for evaluating validity 
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(40,41). Internal procedures refer to the use of sophisticated statistical tech-
niques, such as the bootstrap or other resampling method. External procedures 
use a subset of the original sample that is left out before modeling takes place 
or use an entirely new sample. Whichever procedure is used, the statistics upon 
validation are commonly lower than estimated from the development sample. 
This may be due to differences between the actual samples used or because the 
developed model was overfi tted and thus too optimistic. The risk of overfi tting 
after extensive modeling using many predictors is high, especially in small data 
sets. An optimism-adjusted statistic can then be used instead of the original 
discrimination statistic. To validate a regression model, the Design Library of 
Harrell can be used (42).

With the data in Table 1 and using Equation 7 with no interaction, the 
Somer’s D = 0.75 and R2

N = 0.54. After internally validating the model, the 
Somer’s D = 0.69 and R2

N = 0.45. With 60 subjects and only 3 degrees of 
freedom, we have some concern for overfi tting. With the interaction model in 
Section 6.3, the Somer’s D = 0.76 and R2

N = 0.55. Upon validation, the opti-
mism-adjusted discrimination statistics reduce to Somer’s D = 0.68 and R2

N =
0.38. There is more than a 10% optimism in the Somer’s D statistic and more 
than 30% optimism in R2

N. The original model is overly optimistic when study-
ing an interaction effect using only 60 subjects.

6.4.4. Sample Size/Power and Automated Selection Routines

Sample size should be suffi cient to produce reliable and valid models. Power 
determinations can be made with software such as nQuery Advisor (43) or 
PASS (44). (See Chapter 19 for further discussion on power.) For example, 
by using nQuery Advisor, sample size can be determined to have suffi cient 
power to detect an increase in the odds ratio for a 1 standard deviation increase 
in a normally distributed predictor. This assumes the predictor has a prespeci-
fi ed relationship with the other predictors, measured by R2. Using an R2 = 0.25, 
a 2-tail signifi cance level = 0.05, and assuming the probability of the outcome 
event is 50% for the average value of the predictor, a sample size of at least 
125 subjects is required to achieve 80% power to detect a twofold increase in 
the odds when the predictor increases 1 standard deviation. If the probability 
of the outcome event is 25% instead of 50%, the sample size needed is 165 
subjects. Oftentimes, power determinations are made based on simpler models, 
such as the chi-square test.

Although we encourage power determinations when prior information is 
available, investigators should also be concerned when the number of events 
per variable (EPV) in a logistic model is low (45). For logistic regression 
models to have accurate regression coeffi cients, a general rule of thumb is to 
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have at least 10 events per variable. The number of events is defi ned to be the 
number in the less frequent category. In the hypothetical data from 60 subjects 
in Table 1, 28 subjects have renal disease and 32 do not. Based on the rule of 
thumb, we could only examine about 2 to 3 predictors because there are 28 
subjects in the less frequent category.

It is important to note that the number of variables in the model includes all 
the terms excluding the intercept, for example, multiple terms for nonlinear 
trends, interaction, and design variables. For example, in the model above that 
allows for genotype by TST interaction, we have 1 TST term, 2 genotype terms, 
and 2 interaction terms for a total of 5 variables or degrees of freedom. Based 
on the rule of thumb, we need 50 subjects with renal dysfunction. Because RD 
occurs in about 50% of cases in our sample, we would need approximately 100 
subjects total. Because there are only 60 subjects in the hypothetical study 
sample above, regression coeffi cients are imprecise as indicated in the confi -
dence intervals and the validation section. Note that if RD was expected to 
occur 25% of the time, then we would still need 50 subjects with RD but 150 
without, for a total of 200 subjects.

If there are too many predictors or terms, data reduction should take place. 
One common method uses bivariable selection to reduce the number of predic-
tors, such as the t-test or chi-square test. However, this method is not recom-
mended because it does not properly control for confounding variables. Another 
method of data reduction is to use automated selection routines, such as step-
wise regression for logistic models. Stepwise selection can result in substantial 
bias of regression coeffi cients and odds ratios and, therefore, standard errors 
lose their interpretation (46). Automated methods also produce models that are 
unstable and not reproducible (47). However, automated procedures have been 
shown to predict accurately when EPV was greater than 20 (48).

Another method is to use variable clustering or some similar method to help 
to reduce the number of predictors (31,49). Alternatively, with a model that is 
overfi tted, adjustments can be made to the model using a shrinkage factor or 
penalized maximum likelihood estimation (PMLE) (50,51). Unlike automated 
procedures, these methods have more potential when the EPV is low.

7. Conclusion
Logistic regression is used frequently in medical research, especially because 

these procedures are readily available in statistical software packages. Addi-
tionally, logistic models are easy to interpret because they are probability 
models and their coeffi cients can be expressed as odds ratios. Although they 
have been little used in applications involving molecular biology to date, logis-
tic regression models have enormous potential for developing models using 
various forms of data, both genomic and clinical, to predict class membership, 
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or the phenotype, of individual patients. However, the EPV is typically low 
for applications involving molecular biology. The methods described above to 
adjust for overoptimism using penalized maximum likelihood estimation 
have tremendous potential. For example, Antoniadis (52) has successfully 
applied penalized logistic regression to microarray data to classify acute leu-
kemia patients where there are hundreds of predictors on less than 40 subjects 
(EPV < 1).

Campbell discusses the statistical issues involved in genetic and genomic 
tests (53). The challenge is to evaluate effi ciently the different predictive claims 
that may be associated with a gene chip when predicting class membership. For 
example, can a microarray gene expression pattern predict which patients have 
cancer and which do not (53)? Because there are thousands of potential predic-
tors, the EPV is very low. Campbell suggests using logistic regression but to 
use resampling techniques such as the bootstrap to confi rm analyses or to use 
training sets.

Logistic regression should become a valuable tool to determine the predic-
tive role microarrays have in predicting class membership. However, care 
should be taken that models not be overfi tted. Validation will become para-
mount as well as the PMLE and shrinkage methods (50,51). We strongly 
encourage good reporting of models and following the guidelines suggested 
previously (27–29).
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Survival Analysis

Hongyu Jiang and Jason P. Fine

Summary
This chapter introduces some fundamental results in survival analysis. We fi rst describe what 

is censored failure time data and how to interpret the failure time distribution. Two nonparametric 
methods for estimating the survival curve, the life table estimator and the Kaplan-Meier estimator, 
are demonstrated. We then discuss the two-sample problem and the usage of the log-rank test 
for comparing survival distributions between groups. Lastly, we discuss in some detail the 
proportional hazards model, which is a semiparametric regression model specifi cally developed 
for censored data. All methods are illustrated with artifi cial or real data sets.

Key Words: Actuarial estimator; Cox model; nonparametric methods; product-limit estima-
tor; rank testing; right censoring; semiparametric regression.

1. Introduction
Survival analysis is a branch of biostatistical methods for analyzing data 

representing times to the occurrence of some specifi c event, which are often 
referred to as failure time, survival time, or lifetime. Time to a particular event 
is often of interest in medical or biological studies. As prolonging survival is 
the ultimate goal of medicine, time from an appropriately defi ned origin to 
death is the most frequently used marker for intervention effect. For example, 
in a lung cancer clinical trial, time from the start of treatment to death is often 
used to evaluate whether new therapy is superior to the standard treatment in 
prolonging survival. In some other situations, a marker event of disease pro-
gression might be considered. For example, in HIV clinical trials, time from 
the start of treatment to viral rebound is the most frequently used end point for 
comparing effects of antiretroviral treatments. However, not all the events 
considered are negative. In this chapter, we follow the convention in survival 
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analysis and refer to the event times as failure times. Statistically, we denote 
this time T by a nonnegative valued random variable.

Appropriately defi ning a time-to-event variable is sometimes not a trivial 
task, especially for a retrospective observational study. According to Cox and 
Oakes (1), a well-defi ned failure time needs to satisfy three requirements:

 1. A time origin must be unambiguously defi ned.
 2. A scale of measuring the passage of time must be agreed.
 3. The meaning of failure must be entirely clear.

Note that a commonly defi ned time origin does not mean that all subjects 
have to be followed from the same calendar date. Most studies allow subjects 
to have individual entry dates, in other words, staggered entry into the study.

In most situations, failure times observed from different individuals can be 
assumed to be independently distributed, while distributions of failure times 
under distinct treatments may differ from each other. To describe the random 
behavior of failure times under different treatment, we use the so-called survival 
function, which is defi ned as: S(t) ≡ Pr(T > t), where t is any positive time point. 
S(t) can be interpreted as the proportion of subjects not experiencing the event 
of interest at time t. Some examples of survival functions are displayed in the 
left panel of Figure 1. For example, at time 20 (say the unit is in months), the 
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survival probability is 85% for the dotted curve, 74% for the solid curve, and 
67% for the dashed curve. However, at 80 months, the dashed curve has the 
largest survival probability, 35%, while the solid and dotted curves have sur-
vival probabilities of 30% and 28%, respectively. The function S(t) is also 
referred to as survival curve or event-free probability curve. Survival functions 
share some common properties:

 1. At time t = 0, S(t) = 1, which means no subject fails at the time origin.
 2. Similar to proportions, S(t) takes values between 0 and 1. Depending on the failure 

mechanism, S(t) may reach 0 at infi nity or some positive time point.
 3. S(t) is a nonincreasing function over time.
 4. S(t) = 1 − F(t), where F(t) is the cumulative distribution function, which is often 

used in describing distribution for nonfailure time type random variables.

Although the survival curve may provide the event-free probability for a 
specifi c study population, the probabilities may not be useful in determining an 
individual’s risk of failure at specifi c time points. For example, a 30% 3-year 
survival rate under a particular treatment may not be relevant to a subject who 
is still alive at 3 years after initiating the treatment. For describing this individ-
ual’s risk of failure at 3 years after treatment, one may use the hazard function,
which is usually denoted as l(t). The hazard function is interpreted as the 
instantaneous failure rate at time t given that a subject has already survived to 
t. In statistical notation,

λ( ) lim
Pr( )

t
t T t t T t

tt
=

≤ < + ≥
→∆

∆
∆0

,

where ∆t denotes a small interval of time.
From the defi nition of the hazard function, it is obvious that the function can 

only take nonnegative values because probabilities must be nonnegative. But, 
unlike the survival curve, which is monotonically decreasing, hazard functions 
may take a variety of shapes, including special cases like constant over time, 
monotonically increasing or decreasing, and a “bathtub” shape (decreasing in 
the beginning, plateau in the middle, and increasing later on). The right panel 
of Figure 1 presents the hazard functions corresponding with the survival 
curves in the left panel of Figure 1. The solid and dotted survival curves cor-
respond with the constant and monotonically increasing hazard functions over 
time, respectively, whereas the dashed survival curve is driven by a bathtub-
shaped hazard function.

Survival functions and hazard functions are related through the following 
identity:

S t u du
t

( ) exp ( ) .= −( )∫ λ
0
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Hence, knowing one of these quantities is suffi cient to determine the other. For 
example, the exponentially distributed failure time has constant hazard function 
l0, and the survival function is S(t) = exp(−l0t).

2. Censoring versus Failure
Fortunately in most medical or biological studies, not all subjects would fail 

during the limited follow-up time. When a failure time is not observed before 
the end of follow-up, we say the failure time is right censored because it is only 
known to lie on the right side of the end of follow-up. This phenomenon is 
referred to as right censoring, where the follow-up period is the so-called cen-
soring time, which is often denoted by the random variable C. There are many 
ways of representing right-censored failure time data. One way is as in the fol-
lowing example, where a “+” is attached to observation times where the failure 
time is censored.

Example 1

In a lung cancer clinical trial with study duration of 8 months and staggered 
patient entry, the observed survival times in months under a particular treatment 
are as follows:

5, 4+, 7, 1, 7+, 5, 3.

Notice that in this example, there is an observed failure time tied with a 
censored failure time at 7 months.

The above method is clear and simple for displaying survival data but may 
not be convenient if we want to construct estimators from the data representa-
tion. A more convenient way of representing the observed survival data makes 
use of two additionally defi ned random variables. The fi rst is the total length 
of observation time Y, which could represent a true failure time, or the total 
follow-up period without observing a failure. The second is a binary indicator 
d, which takes value 1 if the observed time is the true failure time and value 0 
if the observed time is the censoring time. In other words, d = I{T ≤ C}, where 
C denotes the censoring time, and I{.} is the indicator function. The observed 
survival data from a random sample of size n can be expressed as {(Yi,di),
i = 1,  .  .  .  , n}. For example, the above data can be represented as in the follow-
ing way:

Y 5 4 7 1 7 5 3

d 1 0 1 1 0 1 1 
.

Besides right censoring, there exist other types of censoring, although less 
frequently observed. One is left censoring, which means for some subjects, the 
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failure time is only known to be shorter than a certain duration. Left-censored 
data can be easily converted to artifi cially right-censored data (2) and may be 
analyzed using the methods that will be presented in the later sections. Another 
type is interval censoring, which means the failure time is only known to lie 
inside an interval [Cl,Cu] (i.e., Cl < T < Cu). A special case of interval-censored 
data is the so-called current status data, in which each subject’s status is only 
evaluated at a single time point Ct. If the event has already occured prior to Ct,
then the current status is coded 1; if the event has not yet happened, then the 
status is coded 0. Methods for right-censored data are not applicable to interval-
censored data. Other special methods are needed but are beyond the scope of 
this chapter. For interested readers, methods for interval-censored data can be 
found in advanced textbooks (3,4).

In this chapter, we focus on inferential methods for right-censored data 
assuming that T and C are independent. That is, the time at which a failure time 
is right-censored is assumed to carry no information about when the failure 
event will happen. With administrative loss to follow-up occurring at the end 
of a study, censoring is clearly independent. However, when a patient drops off 
a study prior to this time, censoring may be related to disease processes and 
potentially informative.

In the presence of right censoring, the estimation of survival function becomes 
quite complicated. If the data were completely observed, we may simply use 
the sample proportion of subjects surviving beyond time t to estimate the sur-
vival probability S(t). However, with censored data, the sample proportion is 
no longer computable when there are subjects whose failure times were cen-
sored prior to t. In the next two sections, two methods for estimating survival 
function with right-censored data will be introduced. Both methods are non-
parametric, meaning that neither makes any assumption on the underlying true 
survival distribution. They are the standard analyses in biomedical research for 
censored data.

3. Life Table Methods
The life table method is probably the oldest method in survival analysis. It 

was developed to track mortality behavior in large populations using annual 
census data. Because the method groups survival data into time intervals, the 
method can be computed fairly easily by hand, which is why it was very useful 
in the precomputer age. The life table estimate of the survival function is also 
called the actuarial estimate because the method is used routinely in actuarial 
science.

With a given survival data set, the steps for calculating the life table estimator 
of survival function is as follows:
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 1. First, divide the time scale into m intervals, which may not be of same length, 
such that all the observed failure times fall into one of the intervals.

 2. For the ith interval, count the number of failure events, Di, and the number of 
censored observations, Ci, in that interval.

 3. Determine Ni, the average number of subjects at risk (e.g., not experiencing the 
failure event) during the ith interval. Usually, the formula, Ni = N0

i − Ci/2 is used, 
where N 0

i denotes the number of subjects at risk in the beginning of the ith interval. 
Note that N 0

i+1 = N 0
i − Di − Ci.

 4. Compute the probability of surviving to the end of the ith interval given survival 
to the beginning of the ith interval as (Ni − Di)/Ni.

 5. Compute the life table estimate of survival probability at the end of ith interval:
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  The estimated survival curve can be obtained by interpolating the above estimates 
at the end of each interval.

The life table estimator makes implicit assumptions that death and censoring 
occur at uniform rates during any particular interval.

For the above Example 1, we consider the following intervals: [0,2), [2,4), 
[4,6), and [6,8), which are numbered from 1 to 4. (Note that the interval [a,b)
includes a ≤ t < b.) Hence, Di, Ci, N 0

i, and Ni can be determined as follows:

 Intervals 
 1 2 3 4

Di 1 1 2 1
Ci 0 0 1 1
N0

i 7 6 5 2
Ni 7 6 4.5 1.5

The life table estimates of survival probabilities at the end of each interval are 
computed as:
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The life table estimate of S(t) is as shown in the dashed line in Figure 2,
where the solid dots indicate the point estimates at the end of each time 
interval.

4. Kaplan-Meier Curves
For census data that are naturally grouped, the life table estimator is a good 

choice for estimating the survival curve. However, for usual right-censored 
survival data that are not grouped, artifi cially grouping the data may not be 
effi cient. A more effi cient nonparametric method is the so-called Kaplan-Meier 
estimator, which is sometimes referred to as the product-limit estimator (5).

To discuss the Kaplan-Meier estimator, the following notation is needed. Let 
t1 < t2 <  .  .  . < tm be the m ordered, unique, uncensored event times, dj be the 
number of subjects who have failure events at time tj, and rj be the number 
of subjects who have not failed before time tj, that is, at risk at tj, where 
j = 1,  .  .  .  , m. One can easily verify that

d I Y t r I Y tj i
i

n

j i j i j
i

n

= = = = ≥
= =
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Fig. 2. Comparison of survival curves of time to relapse. The dashed line is the life 
table estimate, and the solid line is the Kaplan-Meier curve.
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The Kaplan-Meier estimator of S(t) is defi ned on the range of the observed data, 
[0,tn], where tn = max(Yi,i = 1,  .  .  .  , n):
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Unlike the life table estimator, the Kaplan-Meier curve is a right-continuous 
step function that only jumps at the uncensored failure times. For t > tn, if there 
is no censoring at the largest observed time tn, then Ŝ(t) = 0, otherwise, Ŝ(t) is 
undefi ned. Efron (6) proposed estimating S(t) beyond tn by 0, and Gill (7)
suggested Ŝ(tn). The approaches are equivalent in large samples. Klein (8)
showed that in small samples, Gill’s estimator has smaller bias in the tail of the 
distribution.

The variance of the Kaplan-Meier estimator at time t, s 2(t), can be estimated 
by Greenwood’s formula (9):

ˆ ( ) ˆ( )
( )

.
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With no censoring, Equation 2 reduces to the standard binomial variance esti-
mator, n−1Ŝ(t)[1 − Ŝ(t)]. In large samples, Ŝ(t) is approximately normally dis-
tributed with variance s 2(t). Using Greenwood’s formula, a 100(1 − a)%
pointwise confi dence interval for S(t) can be constructed using a normal approx-
imation: Ŝ(t) ± Za/2ŝ (t), where Za/2 is the (1 − a/2)th quantile of the standard 
normal distribution.

We can demonstrate the computation of the Kaplan-Meier estimator using 
Example 1. First we order the distinct uncensored failures times, which are 1, 
3, 5, 7. We then determine how many subjects failed and are at risk at each of 
those time points. These are di and ri, respectively. The details are provided in 
the following table:

 Uncensored times ti

 1 3 5 7

di 1 1 2 1
ri 7 6 4 2

Next, we plug in the above numbers into Equation 1 to obtain the Kaplan-
Meier estimates at ti’s:
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The Kaplan-Meier curve is illustrated in the solid line in Figure 2.

5. Log-Rank Test
In practice, we are frequently interested in formally comparing two survival 

functions rather than just estimating the curves. In a randomized clinical trial 
with two treatment arms, experimental versus control, the goal is to evaluate if 
the experimental treatment improves the survival experience compared with the 
control arm. To answer this question, we need to conduct hypothesis testing. 
(See Chapter 4 for a complete discussion of hypothesis testing.)

Because we are comparing the entire survival experience over the observable 
range, the null hypothesis has to be formulated with the distribution function, not 
just the probability at a particular time point. One way to express the null hypothesis 
is in terms of the survival functions. That is, H0 : S1(t) = S2(t) for t ∈ [0,tn]. Equiva-
lently, we may also assume that under the null hypothesis, the hazard functions in 
the two treatment groups are the same, that is, H0 : l1(t) = l2(t) for t ∈ [0,tn].

With two-sample right-censored data, the above hypothesis can be tested 
using a nonparametric test called the log-rank test (10,11). The advantage of 
the log-rank test is that it does not make any specifi c assumption about the 
distribution of failure time. The idea of the log-rank test is to create a two-by-
two table comparing the number of failure events relative to the numbers at 
risk between groups at each distinct uncensored failure time and then combine 
information from tables at all uncensored time points into a single chi-square 
distributed test statistic.

Specifi cally, assume there are k uncensored failure times. At the ith uncen-
sored failure time point ti, let ri and r1i be the number at risk in the pooled 
sample and in group 1, respectively; let di and d1i be the number of failure events 
in the pooled sample and in group 1, respectively. Then at ti, the observed 
number of failures in group 1, denoted as Oi, equals d1i. Under the null hypoth-
esis of no difference in survival experience between the two groups, we would 
expect the number of failure events occuring at time ti in group 1, denoted as 
Ei, to be proportional to the size at risk in group 1 relative to the total size at 
risk. That is, conditional on (di,r1i,ri), we expect Ei = dir1i/ri.

The log-rank statistics is formulated as
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which has chi-square distribution with 1 degree of freedom, where
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Note that it does not matter which group we choose to compute the log-rank 
statistic—the results should be identical. Log-rank test can also be used to 
compare the failure time distributions for more than two groups. If the total 
number of groups is g, we simply need to select any g − 1 groups and sum up 
the log-rank statistic as in Equation 3 for each group. The resulting statistic 
is
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which follows a chi-square distribution with g − 1 degrees of freedom.
To illustrate the log-rank test, we assume that the observations in Example

1 are from subjects randomized to the control treatment. There are another 7 
subjects who were randomized to the experimental treatment. The pooled data 
set is analyzed in the following example.

Example 2

In a randomized lung cancer clinical trial, the observed survival times (in 
months) under two study treatments are as follows:

 • Experimental arm: 2+, 5, 6+, 7, 7+, 8+, 8+
 • Control arm: 5, 4+, 7, 1, 7+, 5, 3

In the two arms, there are altogether 4 distinct uncensored failure times. 
Letting the experimental arm be group 1, the computation of the observed and 
expected number of failures in group 1 at each time point is illustrated 
below:

ti Oi di ri r1i Ei Oi − Ei Var(Oi − Ei)

1 0 1 14 7 1–2 − 1–2 0.25
3 0 1 12 6 1–2 − 1–2 0.25
5 1 3 10 6 9–5 − 9–5 0.56
7 1 2  6 4 4–3 − 1–3 0.36

Total      −1.63 1.42

Hence, the log-rank statistic is 
( . )

.
.

− =1 63

1 42
3 22

2

 with P value = 0.07.
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6. Proportional Hazards Model
We need to fi t a regression model on survival data for several possible 

reasons. First, the log-rank test can only help us test the treatment effect and 
cannot quantify the difference in effi cacy between the groups. A regression 
model can help us assess the effect size. Second, many studies do not have a 
randomized design, which means the intervention effect could be confounded 
by other factors that may also affect the failure time distribution. Thus, it may 
be helpful to adjust the intervention effect for other possible confounding 
factors through a multiple regression model. Third, for some studies, the main 
purpose may not be to test treatment effects but to investigate the relationship 
among the survival outcome and some risk factors. It is of more interest to 
create a predictive model for survival with the prognostic factors.

With right-censored failure time data, the usual linear regression model 
cannot be used because the least squares method is no longer feasible. Cox 
developed a special semiparametric regression model for censored failure time 
data, which is the famous proportional hazards (PH) model or the Cox model
(12). This model assumes that covariates have multiplicative effects on the 
baseline hazard function. Let xi denote the p × 1 vector of covariates for ith
subject, xi = (xi1,xi2,  .  .  .  , xip)t, and b the 1 × p vector of coeffi cients. The PH 
model assumes that

 l(t;xi) = l 0(t)ebxi = l 0(t)eb1xi1+b2xi2+.  .  .+bpxip, (4)

where l 0(t) corresponds with the hazard function at t for subject whose covari-
ate values all equal to 0. l 0(.) is often referred to as the baseline hazard 
function.

The PH model has several important properties:

 • The PH model is semiparametric because l 0(t) is left unspecifi ed.
 • Under a PH model, the hazard ratio of two subjects with fi xed covariates is a 
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 • The coeffi cients can be interpreted as the logarithm of hazard ratio. A positive 
coeffi cient means the hazard of failing increases with each unit increase in the 
covariates. A negative coeffi cient means the risk decreases with increasing covari-
ate values.

Coeffi cients in a PH model can be estimated by maximizing the so-called 
partial likelihood (1,13). At each uncensored failure time ti, let Ri be the risk 
set at ti, which includes all the indexes of subjects who have not failed prior to 
ti. The partial likelihood can be expressed as
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Each term in the partial likelihood can be interpreted as

Pr(individual with xi fails at ti|one individual from risk set Ri fails).

The maximum partial likelihood estimate of b, b̂, has properties similar to 
those of a regular maximum likelihood estimator for a parametric model. The 
properties of the estimator are insensitive to the underlying baseline failure time 
distribution (1,4).

The original PH model does not allow ties in the uncensored failure times 
or covariates with changing values over time (time-dependent covariates). 
However, the PH model has since been modifi ed to permit ties and time-
dependent covariates, and these features have been incorporated into many 
commercial software packages (3,4).

With b̂, we may obtain the nonparametric estimate of the baseline survival 
function as Ŝ0(t) = exp[−Ĥ0(t)], where Ĥ0(t) is the Breslow estimator of the 
baseline cumulative hazard function (14):
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Thus, for a subject with covariate values xi, the subject-specifi c survival curve 
can be estimated as [Ŝ0(t)]exp[b̂xi]. This is very useful in graphically comparing 
survival curves for subjects with different covariate values.

The validity of the proportional hazards assumption should be checked for 
each covariate included in the model. There are in general two ways of check-
ing the assumption. One is using diagnostic plots. For example, we may plot 
the log[−log] transformed Kaplan-Meier curves for different values of a covari-
ate to see if the curves roughly have constant distances. We may also use diag-
nostic plots of the so-called martingale residuals (a pseudoresidual from the PH 
model), which allows checking the proportionality assumption adjusting for 
other covariates (15–17). The residual plot may be used to check the propor-
tional hazards assumption for a particular covariate, as well as to determine 
whether a covariate should be included in the model and what functional form 
the covariate should take. A detailed review can be found in Therneau and 
Grambsch (18). Another way of checking the PH assumption is testing whether 
there is signifi cant interaction between covariate effect and time. This statistical 
testing approach is less subjective but may be sensitive to small departures from 
proportionality when the sample size is large.

7. Application
We will fi nish this chapter with application of the above methods to a real 

clinical trial example (19).
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Example 3

In a clinical trial, 21 pairs of children with acute leukemia matched by remis-
sion status were recruited. In each pair, one child was randomly assigned to the 
drug 6-mercaptopurine (6-MP) and the other to the control treatment. Patients 
were followed from randomization until their leukemia returned (relapse) or 
until the end of the study. Following are the observed data:

6-MP arm:  6,6,6+,6+,7,9+,10,10+,11+,13,16,17+,19+,20+,22,23,
 25+,32+,32+,34+,35+.

Control arm: 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23.

The Kaplan-Meier estimates of the survival curves of time to relapse for the 
two arms are plotted in Figure 3. The thick solid line is the Kaplan-Meier 
estimator of the survival function for the 6-MP arm, and the thin solid lines are 
the pointwise upper and lower 95% confi dence intervals. Similarly, the thick 
dotted line and thin dotted lines are the Kaplan-Meier estimate and its pointwise 
confi dence limits, respectively, for the control arm. It is easy to see that patients 
receiving 6-MP treatment have much higher survival probabilities than patients 
receiving the control treatment.

We defi ne a treatment indicator, X, taking value 1 for the 6-MP arm and 
0 for the control arm. The two-sample log-rank test indicates that the two 
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Fig. 3. Comparison of survival curves of time to relapse.
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treatments differ signifi cantly in terms of survival (test statistic = 16.8, P value 
<0.0001). To quantify the difference in treatment effect, we fi t a univariate 
proportional hazards model with X being the only predictor. The coeffi cient for 
X is estimated to be −0.786. The hazard ratio of the 6-MP arm to the control 
arm is exp(−0.786) = 0.46, which means 6-MP treatment reduces the hazard of 
death by about 54% compared with the control treatment.

As shown in Figure 4, we plotted the log[−log] transformed Kaplan-Meier 
curves for the two treatment groups versus time in log scale to check the pro-
portional hazards assumption between the groups. The distance between the 
two curves is roughly constant over time. Given the sample size, this plot does 
not provide strong evidence for lack-of-fi t of the Cox model.

8. Conclusion
In this chapter, we fi rst introduced some fundamental concepts in survival 

analysis, which included the defi nition of failure time variable, as well as ways 
of describing the failure time distribution, such as the survival function and the 
hazard function. As failure time data are typically subject to independent right 
censoring, special statistical methods are needed for making inference. In the 
presence of censoring, nonparametric or semiparametric inferential methods 
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Fig. 4. Checking the proportional hazards assumptions.
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that do not make any distributional assumptions are preferred in biomedical 
applications. Two nonparametric methods for estimating the survival curve, the 
life table estimator and the Kaplan-Meier estimator, were presented. For group 
comparisons, we discussed the log-rank test, a nonparametric test for testing 
the equality of survival distributions among groups. The proportional hazards 
model was demonstrated for evaluating intervention effect adjusting for con-
founding factors. The application of survival analysis methods is obviously not 
restricted to the medical area. The same methods can be applied in many other 
fi elds, including engineering, econometrics, sociology, and wherever censored 
time-to-event data are collected.
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Basic Bayesian Methods

Mark E. Glickman and David A. van Dyk

Summary
In this chapter, we introduce the basics of Bayesian data analysis. The key ingredients to a 

Bayesian analysis are the likelihood function, which refl ects information about the parameters 
contained in the data, and the prior distribution, which quantifi es what is known about the 
parameters before observing data. The prior distribution and likelihood can be easily combined 
to from the posterior distribution, which represents total knowledge about the parameters after 
the data have been observed. Simple summaries of this distribution can be used to isolate quantities 
of interest and ultimately to draw substantive conclusions. We illustrate each of these steps of a 
typical Bayesian analysis using three biomedical examples and briefl y discuss more advanced 
topics, including prediction, Monte Carlo computational methods, and multilevel models.

Key Words: Monte Carlo simulation; posterior distribution; prior distribution; subjective 
probability.

1. Introduction
As with most academic disciplines, researchers and practitioners often choose 

from among several competing schools of thought. In music, for example, some 
composers have been guided by the rules of Romanticism, Impressionism, or 
Atonality in developing their work; in art, painters have at various periods fol-
lowed the rules of Cubism, Expressionism, or Dadaism with widely differing 
results. One might assume that a scientifi c discipline such as statistics is immune 
to such philosophical divides. Interestingly, this is not the case. Statistics, as a 
discipline, consists of two main competing schools of thought: The frequentist
or classical approach to statistical inference, and the Bayesian approach. The 
frequentist approach, which includes hypothesis testing and confi dence inter-
vals as two of the main modes of inference, has been the main framework for 
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most of the techniques discussed thus far in this book. We discuss the basics 
of the Bayesian approach in this chapter.

The underlying difference between the Bayesian and frequentist approaches 
to statistical inference is in the defi nition of probability. A frequentist views 
probability as a long-run frequency. When a frequentist asserts that the proba-
bility of a fair coin tossed landing heads is 1-2, he means that in the long run, 
over repeated tosses, the coin will land heads half the time. In contrast, a Baye-
sian, who will also surely say that the probability a coin lands heads is 1-2, is 
expressing a degree of belief that the coin lands heads, perhaps arguing that 
based on the symmetry of the coin there is no reason to think that one side is 
more likely to come up than the other side. This defi nition of probability is 
usually termed subjective probability. Whereas, in practice, a frequentist uses 
probability to express the frequency of certain types of data to occur over 
repeated trials, a Bayesian uses probability to express belief in a statement about 
unknown quantities.

These defi nitions have profound impact on a framework for statistical infer-
ence. Because a Bayesian uses subjective probability, he can describe uncer-
tainty of a statement about an unknown parameter in terms of probability. A 
frequentist cannot. So, for example, it is legitimate for a Bayesian to conclude 
as a result of a data analysis that an interval contains a parameter of interest 
with 95% probability. A frequentist, in contrast, will use probability to describe 
how often the calculations that produce an interval will cover the parameter of 
interest in repeated samples. For instance, frequentist 95% confi dence intervals 
have the property that, in the long run, 95% of such intervals will cover the 
parameters being estimated. But, unfortunately for the frequentist, once a set 
of data is observed and an interval is computed, the frequentist concept of prob-
ability is no longer relevant. Further, when a Bayesian is evaluating two com-
peting hypotheses about an unknown parameter, he can calculate the probability 
of each hypothesis given observed data and then choose the hypothesis with 
the greater probability. A frequentist, on the other hand, cannot use probability 
in such a direct way, and instead will approach the problem asymmetrically 
and ponder the long-run frequency under one of the hypotheses of sampling 
data as extreme or more extreme than what was observed.

This chapter describes the basics of Bayesian statistics. We begin by describ-
ing the main ingredients of a Bayesian analysis. In this discussion, we explain 
how to obtain the posterior distribution of model parameters and how to obtain 
useful model summaries and predictions for future data. We then demonstrate 
an application of the Bayesian approach to multilevel models, using Monte
Carlo simulation as a computational tool to obtain model summaries.

2. Fundamentals of a Bayesian Analysis
A typical Bayesian analysis can be outlined in the following steps.
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 1. Formulate a probability model for the data.
 2. Decide on a prior distribution, which quantifi es the uncertainty in the values of 

the unknown model parameters before the data are observed.
 3. Observe the data, and construct the likelihood function (see Section 2.3) based on 

the data and the probability model formulated in step 1. The likelihood is then 
combined with the prior distribution from step 2 to determine the posterior dis-
tribution, which quantifi es the uncertainty in the values of the unknown model 
parameters after the data are observed.

 4. Summarize important features of the posterior distribution, or calculate quantities 
of interest based on the posterior distribution. These quantities constitute statistical 
outputs, such as point estimates and intervals.

We discuss each of these steps in turn in Sections 2.1–2.4.
The main goal of a typical Bayesian statistical analysis is to obtain the pos-

terior distribution of model parameters. The posterior distribution can best be 
understood as a weighted average between knowledge about the parameters 
before data is observed (which is represented by the prior distribution) and the 
information about the parameters contained in the observed data (which is 
represented by the likelihood function). From a Bayesian perspective, just about 
any inferential question can be answered through an appropriate analysis of the 
posterior distribution. Once the posterior distribution has been obtained, one 
can compute point and interval estimates of parameters, prediction inference 
for future data, and probabilistic evaluation of hypotheses. Predictive inference 
is the topic of Section 2.5.

2.1. Data Models

The fi rst step in a Bayesian analysis is to choose a probability model for the 
data. This process, which is analogous to the classic approach of choosing a data 
model, involves deciding on a probability distribution for the data if the parame-
ters were known. If the n data values to be observed are y1,  .  .  .  , yn, and the vector 
of unknown parameters is denoted q, then, assuming that the observations are 
made independently, we are interested in choosing a probability function p(yi | q)
for the data (the vertical bar means “conditional on” the quantities to the right). In 
situations where we have extra covariate information, xi, for the ith case, as in 
regression models, we would choose a probability function of the form p(yi | xi, q).
When the data are not conditionally independent given the parameters and covari-
ates, we must specify the joint probability function, p(y1,  .  .  .  , yn | x1,  .  .  .  , xn, q).

Example 1

A random sample of 300 women aged 60–69 years whose immediate fami-
lies have had histories of cancer are to be screened for breast cancer. Let yi be 
1 if woman i has a positive test, and 0 if not, for i = 1,  .  .  .  , 300. Let q be the 
probability that a randomly selected woman aged 60–69 years with a family 
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history of cancer has a positive breast cancer screening. Then an appropriate 
model for the data is to assume that the yi independently follow a Bernoulli 
distribution with probability q, that is,

p(yi | q) = q yi(1 − q)1−yi

for i = 1,  .  .  .  , 300.

Example 2

A random sample of 50 men with a history of cardiovascular disease enters 
a study on LDL (low-density lipoprotein) cholesterol. Let yi be the LDL cho-
lesterol level (in mg/dL) for man i, i = 1,  .  .  .  , 50. A reasonable probability 
model for LDL cholesterol levels is a normal distribution. We can assume that 
the yi are independently normal with unknown common mean m and variance 
s2. The probability function for yi is given by

p y yi iµ σ
πσ

µ σ, exp2

2

2 21

2
2( ) = − −( )( )

for i = 1,  .  .  .  , 50.

2.2. Prior Distribution

Once the data model (probability model) is chosen, a Bayesian analysis 
requires the assertion of a prior distribution for the unknown model parameters. 
The prior distribution can be viewed as representing the current state of knowl-
edge, or current description of uncertainty, about the model parameters prior 
to data being observed.

Approaches to choosing a prior distribution divide into two main categories. 
The fi rst approach involves choosing an informative prior distribution. With this 
strategy, the statistician uses his knowledge about the substantive problem 
perhaps based on other data, along with elicited expert opinion if possible, to 
construct a prior distribution that properly refl ects his (and experts’) beliefs 
about the unknown parameters. The notion of an informative prior distribution 
may seem at fi rst to be overly subjective and unscientifi c. In response to this 
concern, it should be pointed out that the selection of a data model, which a fre-
quentist needs to make, is also a subjective choice, so that frequentist analyses 
are not devoid from subjectivity either. Furthermore, it can be argued that if extra 
information or knowledge about the model parameters exists prior to observing 
data, it would be unscientifi c not to incorporate such information into a data 
analysis. For example, in a study measuring the weight of preterm births, it 
would be sensible to incorporate into the prior distribution that the “prior proba-
bility” of a mean birth weight above 15 lb is negligible. Another criticism by 
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frequentists of using informative prior distributions is that two Bayesian statisti-
cians are likely to use two different prior distributions, which leads to two dif-
ferent sets of inferences for the same scientifi c problem. Again, it is reasonable 
to respond to this criticism by pointing out that when frequentists use different 
data models on the same data, conclusions will be different as well. From a 
Bayesian point of view, a prior distribution is part of the overall statistical model, 
so that two Bayesian statisticians selecting different prior distributions is analo-
gous to two frequentist statisticians choosing two different data models.

The second main approach to choosing a prior distribution is to construct a 
noninformative prior distribution that represents ignorance about the model 
parameters. Besides noninformative, this type of distribution is also called 
objective, vague and diffuse, and sometimes a reference prior distribution. 
Choosing a noninformative prior distribution is an attempt at objectivity by 
acting as though no prior knowledge about the parameters exists before observ-
ing the data. This is implemented by assigning equal probability to all values 
of the parameter (or at least approximately equal probability over localized 
ranges of the parameter). The appeal of this approach is that it directly addresses 
the criticisms of informative prior distributions as being subjectively chosen. 
In some cases, there is arguably a single best noninformative prior distribution 
for a given data model, so that this prior distribution can be used as a default 
option, much like one might have default arguments in computer programs. 
Unfortunately, noninformative prior distributions are not without their prob-
lems either. First, because there are various commonly accepted criteria for 
constructing noninformative prior distributions, it is rare that, for a given data 
model, all these criteria produce the same unique noninformative prior distribu-
tion. Second, some common methods for constructing noninformative prior 
distributions, such as always assuming a uniform distribution for a parameter, 
result in an interesting inconsistency. Any method for constructing a noninfor-
mative prior distribution ought to be invariant to the measurement scale of the 
parameter; if, for example, the method of constructing a noninformative prior 
distribution is applied to a data model with parameter q, and then applied to 
the same model reparameterized with parameter h = log(q), it would be desir-
able that the distributions on q and h were representing equivalent probabilistic 
information. It turns out that this is a diffi cult criterion to satisfy (one approach 
constructed to satisfy this invariance criterion is Jeffrey’s rule, which works 
well with one-parameter data models but with mixed results for multiparameter 
models). Finally, many commonly used methods for constructing a noninforma-
tive prior distribution result in probability functions that integrate to infi nity, 
usually called improper distributions, and are not formally probability distribu-
tions. Luckily, for many problems, having an improper prior distribution still 
allows for a coherent Bayesian analysis.
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In general, if an objective prior distribution is desired, one defensible strategy 
is to construct a relatively uniform proper (i.e., integrates to 1) prior distribution. 
If the information contained in the data is supposed to be the main determining 
factor in producing statistical inferences (as it should be), then we should expect 
that the choice among a range of relatively fl at prior distributions will not make 
much of a difference. On the other hand, if the choice of a relatively fl at prior 
distribution does matter, this may be an indication that the data conveys little 
information about the parameter of interest, and it may be appropriate to rethink 
the form of the data model, or to collect additional data.

Example 1 (Continued)

Recall that q is the probability a randomly selected woman, aged 60–69 years 
with a family history of cancer, has a positive breast cancer screening. Accord-
ing to the American Cancer Society, roughly 3.6% of women aged 60–69 years 
develop invasive breast cancer, so that we may form an informative prior dis-
tribution for q that refl ects this information. A fl exible choice of a prior distribu-
tion for a Bernoulli probability is q ∼ Beta(a, b), that is, q has a Beta distribution 
with specifi ed parameters a and b. The probability function is given by

p θ α β α β
α β

θ θα β,( ) =
+( )

( ) ( )
−( )− −Γ

Γ Γ
1 11

where Γ() represents the Gamma function.1 The mean of a Beta distribution is 
a/(a + b). The value a + b has an interpretation as the amount of information 
about q viewed as a sample size. For the cancer screening problem, the choice 
q ∼ Beta(0.36, 9.64) is sensible, as this distribution has a mean of 0.36/(0.36 +
9.64) = 0.036, the estimate given by the American Cancer Society, and the 
information represented by this distribution is equivalent to that in 0.36 + 9.64
= 10 data values. A plot of the probability function is given in Figure 1. Note 
that the greatest probability under this distribution of q is concentrated around 
very low values, which is meant to refl ect our initial belief that a value of q
much larger than 0.1 or 0.15 is not very plausible. With an eventual sample of 
500 observations, the data is about 50 times more informative than the prior 
distribution.

Example 2 (Continued)

For studying LDL cholesterol levels, we assume a noninformative prior dis-
tribution for the mean m and variance s 2 of the normal data model. A strategy 

1 The Gamma function is closely related to the factorial function: For a positive 
integer n, Γ(n) = (n − 1)!. For more details about the Gamma function, see (1).
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that can often be employed for models with multiple parameters is to consider 
each parameter separately and form the joint prior distribution as a product of 
the several independent distributions.

The most common noninformative choice for a location parameter, such as 
a mean (or a regression coeffi cient), is to assume an improper uniform distribu-
tion over the entire real line. Thus we assume

p(m) = 1

for −∞ < m < ∞ even though this function does not integrate over the range. 
We further assume, independently, that the prior distribution for s 2 is the 
improper probability function

p(s 2) = 1/s 2.

By a change-of-variables argument from elementary calculus, this distribution 
on s 2 corresponds with a uniform distribution on log(s 2) over the entire real 
line. Besides having the appeal of placing a uniform distribution over a para-
meter that has been transformed to take values over the entire real line, as with 
m, this prior distribution also recognizes that extremely large values of s 2 are 
less believable a priori than are small values. A uniform distribution on 
the untransformed variance, s 2, in contrast, asserts that a variance between 
1,000,000 and 1,000,001 is as likely a priori as a variance between zero and 
one, which is not particularly believable. We therefore assume an improper 
joint prior distribution for (m, s 2) equal to

p(m, s 2) = p(m)p(s 2) = 1 ⋅ (1/s 2) = 1/s 2.

0.0
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Fig. 1. Probability function for the Beta(0.36, 9.64) distribution.



326 Glickman and van Dyk

2.3. From the Likelihood to the Posterior Distribution

Once the data has been observed, the likelihood function, or simply the 
likelihood, is constructed. The likelihood is the joint probability function of the 
data, but viewed as a function of the parameters, treating the observed data as 
fi xed quantities. Assuming that the data values, y = (y1,  .  .  .  , yn) are obtained 
independently, the likelihood function is given by

L y p y y p yn i
i

n

θ θ θ( ) = ( ) = ( )
=

∏1
1

, , .…

In the Bayesian framework, all of the information about q coming directly from 
the data is contained in the likelihood. Values of the parameters that correspond 
with the largest values of the likelihood are the parameters that are most sup-
ported by the data.

To obtain the posterior distribution, p(q | y), the probability distribution 
of the parameters once the data have been observed, we apply Bayes’ 
theorem:

p y
p p y

p p y d

p L y

p y
p L y( )

( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )q q q

q q q
q q q q= = ∝

∫
where “∝” means “is proportional to” (i.e., that the expressions are equal when 
the right-most term is multiplied by a normalizing constant that doesn’t depend 
on q). Operationally, therefore, it is straightforward in principle to obtain the 
posterior distribution: Simply multiply the prior distribution by the likelihood, 
and then determine the constant (not depending on q) that forces the expression 
to integrate to 1. An effective strategy for computing the posterior distribution 
is to drop multiplicative constants from the prior distribution and likelihood 
that do not depend on q, and then in the fi nal step determine the normalizing 
constant.

Example 1 (Continued)

Suppose, for the breast cancer screening study, 14 of the 300 women had 
positive tests. Thus 14 women have yi = 1, and the remaining 286 have yi = 0. 
The likelihood is therefore given by

L y y y

i

i i( ) ( ) ( )q = − = −−

=
∏θ θ θ θ1 11

1

300
14 286 .

The posterior distribution is proportional to the product of the Beta prior dis-
tribution (with parameters a = 0.36 and b = 9.64) and the likelihood,
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L y p L y( ) ( ) ( )
( )

( . ) ( . )
( ). .q ∝ ∝ −⎛

⎝⎜
⎞
⎠⎟ ⋅−θ θ θ θ θΓ

Γ Γ
10

0 36 9 64
10 64 8 64 114 286

0 64 8 64 14 286 13 36 294 64

1

1 1 1

( )

( ) ( ) ( ). . . .

−

∝ − ⋅ − ∝ −−

θ

θ θ θ θ θ θ .

Note that the normalizing constant in the prior distribution was dropped as 
it does not depend on q. Rather than determine the normalizing constant analy-
tically, we notice that the fi nal expression is proportional to a Beta distribution 
with parameters a = 14.36 and b = 295.64, so that the posterior distribution 
must be

p y( )
( )

( . ) ( . )
( ). .q = −

Γ
Γ Γ

330

14 36 295 64
113 36 294 64θ θ .

Thus, the posterior distribution is q | y ∼ Beta(14.36, 295.64).

Example 2 (Continued)

In the LDL cholesterol study, suppose the 50 LDL cholesterol measurements 
are taken. The likelihood is the product of 50 normal probability functions:

L y p y yi
i

i
i

( ) ( , ) exp( ( ) )

(

µ σ µ σ
πσ

µ σ

πσ

, 2 2

1

50

2

2 2

1

50 1

2
2

1

2

= = − −

=

= =
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22 25

2 2

1

50

2
)

exp .− −( )⎛
⎝⎜

⎞
⎠⎟=

∑ yi
i

µ σ

Letting y
n

yi i= =∑1
1

50  and s y yi i
2

1
50 21

49
= −=∑ ( )  be the sample mean and vari-

ance, respectively, the likelihood can be rewritten in a more useful form as

L y yi
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exp 99 50 22 2 2s y+ −( )( )µ σ .

We again use the standard choice of noninformative prior distribution on the 
parameters of a normal model, p(m, s 2) = 1/s 2. With this choice of prior dis-
tribution, the posterior distribution can be computed as follows:

p y p L y s y( ) ( ) ( )
( )

exp( ( ( ) )µ σ µ σ µ σ
σ πσ

µ, , ,22 2
2 2 25

2 21 1

2
49 50∝ ∝ ⋅ − + − 22

49 2
1

2 50

2

2 25 5 2 2 2
2

σ

σ σ
σ

µ σ

)

( ) exp( ) exp ( ) ( ).∝ − ⋅ − −( )− s y .
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The second term in the above expression, as a function of m with the appropriate 
constant, is a normal distribution with mean ȳ and variance s 2/50. The fi rst 
term, with the appropriate constant, is an inverse-c2 distribution; this means 
that 1/s 2 has the more familiar chi-square distribution. The posterior distribu-
tion p(m, s 2 | y) therefore factors into a marginal posterior distribution of s 2,
p(s 2 | y), which is inverse-c2, and a conditional posterior distribution of m given 
s 2, p(m | s 2,y), which is normal. A marginal posterior distribution specifi es the 
posterior distribution for a subset of the model parameters without regard to 
the other parameters. A conditional posterior distribution, on the other hand, is 
the posterior distribution of a subset of the parameters subject to the other 
parameters having specifi ed values.

In this example, the joint posterior distribution can be written

p(m, s 2 | y) = p(s 2 | y)p(m | s 2, y)

where s 2 | y ∼ Inv-c2(49, s2) (i.e., 49s2/s 2 has a chi-square distribution on 49 
degrees of freedom), and m | s 2, y ∼ N(ȳ, s 2/50). Once the sample mean and 
sample variance have been computed from the data, these values can be sub-
stituted in to obtain the actual distributions. It is also worth noting that s2 can 
be integrated out of the joint posterior density to obtain the marginal posterior
density of m, which is

m | y ∼ t49(ȳ, s2/50),

that is, a t-distribution with 49 degrees of freedom that is centered at ȳ and res-
caled by s/ 50.

2.4. Posterior Summaries

Once the posterior distribution has been determined, inferential conclusions 
can be summarized with an appropriate analysis. Point estimates of parameters 
are commonly computed as the mean or the mode (i.e., highest point) of the 
posterior distribution. Interval estimates can be calculated by producing the end 
points of an interval that correspond with specifi ed percentiles of the posterior 
distribution. For example, a 95% central posterior interval involves computing 
the 2.5%-ile and 97.5%-ile of the posterior distribution. Probabilities of com-
peting composite hypotheses can be evaluated by calculating their posterior 
probability, that is, the probability of the hypotheses based on the posterior 
distribution.

Example 1 (Continued)

With a posterior distribution for the probability of a positive breast cancer 
screening of Beta(14.36, 295.64), we can compute informative inferential sum-
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maries about q. The posterior mean and posterior mode are the two most 
common point estimates for a parameter. For a Beta distribution with parame-
ters a and b, the mean is a/(a + b), and the mode is (a − 1)/(a + b − 2). The 
posterior mean estimate of q is therefore

E(q | y) = 14.36/(14.36 + 295.64) = 0.0463.

The posterior mode estimate of q, the most “believable” value of q, is

Mode(q | y) = (14.36 − 1)/(14.36 + 295.64 − 2) = 0.0434.

To construct a 95% central posterior interval for q, we need to fi nd the 
appropriate percentiles of the Beta(14.36, 295.64) distribution. Analytically, 
this involves evaluating the integral ∫0

c
p(q | y)dq = 0.025 and solving for c to 

obtain the lower end point of the interval, and similarly for the upper end point. 
Using statistical software (like R or S-Plus, SAS, Stata, SPSS, etc.), the per-
centiles can easily be evaluated numerically. The 2.5%-ile and the 97.5%-ile 
of the posterior distribution are computed to be 0.0259 and 0.0723, respectively, 
so that the 95% central posterior interval for q is (0.0259, 0.0723). There is a 
0.95 posterior probability that q lies in this interval.

Suppose for health policy reasons that it is important to know whether 
q > 0.05. We can translate the question into a posterior probability computation 
of

P( 0.05 )= .
0.05

1
θ θ θ> ( )∫y p y d

Rather than attempting to evaluate this Beta integral analytically, we can evalu-
ate it numerically using statistical software. The probability from the Beta 
posterior distribution is computed to be 0.351, which implies that the probabil-
ity q < 0.05 is 0.649. Thus we may conclude that it is more likely than not that 
q < 0.05.

Example 2 (Continued)

We computed the joint posterior distribution of m and s 2, the mean and vari-
ance of the normal model, in the LDL cholesterol study. This posterior distribu-
tion depends on the data through the sample mean and sample variance of the 
50 measurements, ȳ and s2, respectively. Now suppose that upon observing the 
measurements, we compute ȳ = 110 and s2 = 100. From a Bayesian perspective, 
the posterior distribution is a complete summary of what we know about the 
parameters, both from the data and—as quantifi ed via the prior distribution—
from other sources of information. In this case, we can plot the posterior dis-
tribution and use the plots to quantify what we understand about the unknown 
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parameters. A contour plot of the joint posterior distribution appears in the fi rst 
panel of Figure 2. The next two panels represent the marginal posterior distri-
butions of m and s 2, respectively. These distributions represent our knowledge 
about likely values of the mean and variance of LDL cholesterol levels in this 
particular population of men. Judging from the posterior distribution of m, the 
mean LDL cholesterol level is about 110 plus or minus about four. The posterior 
distribution of s 2 tells us how much the level varies among men: The variance 
appears to be about 100 but could be as low as 60 or as high as 175. Notice 
that the posterior distribution of s 2 is slightly skewed toward the right. Looking 
at the joint distribution, the mean and variance appear to be uncorrelated. This 
means that inference about particular values of m does not have a relationship 
to our inference about values of s 2.

2.5. Predictive Distributions

One of the benefi ts of the Bayesian approach is that predictive inference is 
a straightforward computation once the posterior distribution has been obtained. 
Suppose we have observed data y = (y1,  .  .  .  , yn), and we would like to make a 
prediction about a future observation y. From an analysis of the data, we have 
obtained p(q | y), the posterior distribution. We are interested in making proba-
bilistic statements about an unobserved y, so that we want to compute the pos-
terior predictive distribution of y. The posterior predictive distribution is written 
as p(y | y). Note that we are not interested in conditioning on parameter values, 
but that we only want to condition on what we have observed: the previous 
data.
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Fig. 2. The posterior distribution of parameters of LDL cholesterol levels. The three 
fi gures depict the 2-dimensional joint posterior distribution of the mean and variance 
of LDL cholesterol in the population of men. A contour plot of the joint distribution 
and plots of both of the marginal distributions are given.
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The posterior predictive distribution can be computed using the equation

p y p y p d( ) ( ) ( )y y=∫ q q q

which makes the often appropriate assumption that future data is independent 
of past data conditional on the parameters. Thus, integrating the product of the 
data model distribution with the posterior distribution with respect to the model 
parameters produces the posterior predictive distribution, which can then be 
summarized for predictive inferences.

Example 2 (Continued)

Let y be an LDL cholesterol measurement taken of a man with a history of 
cardiovascular disease not yet sampled. We are interested in deriving the pos-
terior predictive distribution of y, that is, p(y | y). We must therefore evaluate

p y p y p d d

p y p p d d

( ) ( , ) ( )

( , ) ( ) ( )

y y

y y

= ,

,

µ σ µ σ µ σ

µ σ σ µ σ µ σ

2 2 2

2 2 2 2

∫∫
∫= ∫∫ .

It can be shown that with the normal distribution for y, the normal conditional 
posterior distribution for m given s 2, and the inverse-c2 marginal posterior 
distribution for s 2, the integral is evaluated to

p y
y

s
( )

( )

( )
y ∝ +

−
+

⎛
⎝⎜

⎞
⎠⎟

−

1
50

49 1 1 50

2

2

25
y

which is a t-distribution on 49 degrees of freedom centered at ȳ and
with a scale parameter of s n2 1 1+( ) . (In our example, ȳ = 110, s2 = 100, and 
n = 50.)

3. Application to Multilevel Models
3.1. Monte Carlo Methods

The examples above illustrate how statistical summaries of scientifi c interest 
can be expressed as integrals of the posterior distribution. Although in simple 
cases these integrals can sometimes be computed analytically, in more complex 
realistic examples, numerical methods are required. Even computing a 95% 
central posterior interval for the probability of breast cancer, q, in Example 1
required numerical methods. In this section, we describe Monte Carlo methods, 
which have revolutionized applied Bayesian data analysis over the past 20 
years. Monte Carlo methods are so important because they are often relatively 
easy to understand and implement, yet are powerful enough to enable us to 
compute relevant statistical summaries even when fi tting highly structured 
models.
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As an introduction to Monte Carlo methods, we return to the LDL cholesterol 
study.

Example 2 (Continued)

Monte Carlo methods are simulation-based methods. With a specifi ed prob-
ability distribution, a typical Monte Carlo simulation involves a computer 
program generating multiple plausible values from the distribution. In Bayesian 
data analysis, this generally involves acquiring a sample from the posterior (or 
posterior predictive) distribution. In Figure 3, we compare a Monte Carlo 
sample from the posterior distribution with the three plots of the posterior dis-
tribution given in Figure 2. The key here is that we can draw the same infer-
ences regarding m and s 2 from either the plots of the Monte Carlo sample or 
from the plots of the posterior distribution itself. In addition to the qualitative 
descriptions discussed in Section 2.3, we can compute posterior means by 
averaging over the Monte Carlo sample or compute a 95% central interval, by 
computing the 2.5%-ile and 97.5%-ile of the Monte Carlo sample.

Example 2 is a simple illustration with only two parameters. This makes it 
easy to visually examine the joint posterior distribution and to compute the 
marginal posterior distributions of the parameters of interest. In more complex 
settings, however, the dimension of the unknown parameter may be much 
larger. In image analysis (e.g., functional magnetic resonance imaging), for 
example, there may be an unknown image intensity in each of a large number 
of pixels or voxels. In such settings, there may be hundreds or thousands of 
unknown parameters. It is in such settings that Monte Carlo methods are so 
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Fig. 3. A Monte Carlo sample from the posterior distribution of parameters of LDL 
cholesterol levels. A Monte Carlo sample is compared with each of the 3 plots given 
in Figure 2. The Monte Carlo sample carries the same information about the posterior 
distribution as the analytically computed plots.



Basic Bayesian Methods 333

useful. Although we cannot plot the joint posterior distribution or even compute 
the high-dimensional integrations that are required to evaluate the marginal 
posterior distributions of low-dimensional quantities of scientifi c interest, we 
may be able to acquire a Monte Carlo sample from the posterior distribution. 
That is, although we cannot produce plots analogous to those in Figure 2, we 
can produce scatter plots and histograms analogous to those in Figure 3. From 
these representations of the Monte Carlo sample, we can construct statistical 
inferences for unknown quantities of scientifi c interest, even in highly complex 
models. This strategy is illustrated in a more complex setting in Section 3.2.

There are a variety of techniques available for acquiring a Monte Carlo 
sample from a given posterior distribution. Perhaps the most important class of 
such techniques is known as Markov chain Monte Carlo (MCMC). It was the 
development of MCMC in the statistical literature, starting in the late 1980s, 
that greatly expanded the class of models that can be fi t using Monte Carlo 
techniques. An important example of MCMC is the Gibbs sampler. Rather than 
directly acquiring a Monte Carlo sample from the posterior distribution, the 
Gibbs sampler cycles through a set of conditional posterior distributions, sam-
pling from each distribution conditional on the most recent draw of the remain-
ing parameters. Because the conditional distributions involve a smaller number 
of unknown parameters, they tend to be simpler to simulate. Carefully designed 
Gibbs samplers allow highly complex models to be divided into a sequence of 
simpler more standard models, all of which can be fi t using standard Bayesian 
statistical techniques. The iterative nature of the Gibbs sampler (and other 
MCMC techniques) means that it can be sensitive to starting values, and its 
Monte Carlo nature means that convergence diagnostics can be subtle. Here, 
we have only scratched the surface of the numerous technical issues involved 
in designing, implementing, and detecting convergence of MCMC samplers. 
Nonetheless, interpreting the scientifi c results is done in much the same way 
as with the Monte Carlo methods described here. Readers interested in learning 
more about this important class of Bayesian computational methods are directed 
to the references in Section 4 and the citations therein.

3.2. Multilevel Models

The power of Monte Carlo sampling in conjunction with Bayesian methodol-
ogy is that it allows us to fi t models that are explicitly designed to capture the 
complexity of any given data generation mechanism. We often accomplish this 
by hierarchically combining a series of simple models into a single more appro-
priate model. In this section, we illustrate this strategy in an extended example. 
Although this example is relatively simple by current standards, we hope that 
it will give the reader a fl avor for how multilevel models are constructed and 
for the power of combining Monte Carlo sampling with Bayesian methods.
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Example 3

In an experiment described by Weil (2), 32 pregnant female rats were divided 
into 2 groups. In the control group, the mothers were fed a control diet during 
pregnancy and lactation. In the second group, the mothers’ diets were treated 
with a chemical. The number of pups in each litter that survived 4 days was 
recorded as the litter size. Of these, the number that survived the 21-day lacta-
tion period were also recorded. For our purposes, we consider only the treat-
ment group and investigate how the probability of 21-day survival varies among 
the litters in this population and fi t the probability of survival for each of 
the 16 observed treatment litters. The data for the treatment litters appear in 
Table 1, which records the size of each litter (number of pups that survive for 
4 days) and number of these that survive for 21 days.

We begin by formulating a probability model for the data. For each litter, 
let ni be the size of the litter and yi be the number of pups that survive the 21-
day lactation period. We assume the pups within each litter have equal probabil-
ity of survival and use a binomial distribution to model the number that survive. 
In particular, we assume yi | qi ∼ Binomial(ni, qi), that is,

p y
n

y
i i

i

i
i
y

i
n yi i i( ) ( )( )θ θ θ= ⎛

⎝⎜
⎞
⎠⎟ − −1 .

Because we believe the survival rates vary among the litters, we allow qi to 
depend on i. The distribution of the qi is of primary interest in this study (in 
particular, we may be interested in how the distribution is affected by the treat-
ment). Therefore we introduce a probability model for the qi. As discussed in 
Example 1, the Beta distribution is particularly well suited for modeling prob-
abilities. Thus, we assume qi ∼ Beta(a, b). The parameters a and b determine 
the shape, mean, and variability of the Beta distribution and thus of the survival 
probabilities among litters in the treatment group.

Table 1
Data for the 16 Litters of Rats in the Treatment Group

 Litter

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Size 12 11 10 9 11 10 10 9 9 5 9 7 10 6 10 7
Surviving 12 11 10 9 10  9  9 8 8 4 7 4  5 3  3 0

The litter sizes and the number of pups surviving the 21-day lactation period are recorded.
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In Example 1, we used prior information as to the probability of breast 
cancer to set the values of a and b. In this case, however, a and b are fi t to the 
data to describe the distribution of the survival probabilities. Because a and b,
both restricted to be positive, are treated as model parameters, we must decide 
on prior distributions for these 2 parameters. Here we choose independent 
noninformative prior distributions that are uniform on log(a) and log(b). As in 
Example 2, this corresponds with prior distributions that are proportional to 
the reciprocal, that is, p(a, b) ∝ 1/ab.

Combining the two parts of the specifi cation of the data model with the prior 
distribution leads to a 3-level model. In particular, the statistical model can be 
formulated as a Beta-binomial model (3) with noninformative prior distribution 
as follows:

Level 1: yi | qi ∼ Binomial(ni, qi) for i = 1,  .  .  .  , 16.
Level 2: qi | a, b ∼ Beta(a, b) for i = 1,  .  .  .  , 16.
Level 3: p(a, b) ∝ 1/ab.

Level 1 specifi es the 16 within-litter distributions, level 2 describes the vari-
ability among the litters in the treatment population, and level 3 is the (nonin-
formative and improper) prior distribution. This is a simple illustration of how 
standard probability distributions can be combined hierarchically to form more 
complex and more appropriate models—models that can more fully describe 
the richness of the data generation mechanism.

With the data model, prior distribution, and observed data in hand, we con-
struct and compute the posterior distribution as described earlier. We acquire a 
Monte Carlo sample from the joint posterior distribution of (q1,  .  .  .  , q16, a, b).
Figure 4 represents the Monte Carlo sample from the marginal posterior 
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Fig. 4. A Monte Carlo sample from the joint posterior distribution of a and b.
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distribution of a and b, and Figure 5 represents a sample from the marginal 
posterior distributions of q4, q13, and q16. In this case, the plots in Figure 5
are more relevant because the parameters are more easily interpreted: they are 
the marginal posterior distributions of the survival probabilities for 3 of the 
litters.

Comparing the three plots in Figure 5, it is clear that the survival probabili-
ties vary among the litters. To explore this further, we can acquire a Monte 
Carlo sample from the predictive distribution of the survival probability of 
another litter. A histogram of this Monte Carlo sample appears in the fi rst panel 
of Figure 6. This distribution accounts for both the variability among the litters 
and the uncertainty in the distribution of the survival probabilities. These two 
variance components correspond with the variability among the histograms in 
Figure 5 and the uncertainty in a and b illustrated in Figure 4, respectively. 
The fi nal histogram in Figure 6 is a Monte Carlo sample from the posterior 
predictive distribution of the number of surviving pups for an additional litter 
of size 10. This distribution accounts for both the variability in q as represented 
by the fi rst histogram in Figure 6 and for the binomial variation of pup 
survival.

We can fi t the survival probabilities of each of the 16 litters by averaging 
over the Monte Carlo sample of each of these 16 parameters. The results, along 

Litter 4

probability of survival (θ4)
0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Litter 13

probability of survival (θ13)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Litter 16

probability of survival (θ16)
0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Fig. 5. Histograms of the Monte Carlo sample of the survival probabilities of 3 
of the litters. The solid circles on the horizontal axis of each of the histograms represent 
the sample proportion of the pups that survived in that litter. Notice that in all 3 cases 
the histograms have their centers of mass a bit off of the sample proportion, in the 
direction of the fi tted population mean of 0.74. This is known as shrinkage: the posterior 
mean “shrinks” from the sample proportion toward the fi tted population mean.
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with the sample proportion of surviving pups in each litter, appear in Table 2.
Notice that in each case, the fi tted probability is between the sample proportion 
and the expected survival probability of a new litter, 0.74. Although the sample 
proportion is the standard estimate of the survival probability for a single litter, 
like all statistical estimates, these have error because of the variable nature of 
binomial data. Because we are simultaneously fi tting the population distribution 
of survival probabilities, we have some information as to the direction of the 
estimates’ error. The Bayesian estimate is an average of the population mean 
and the sample proportion. As the size of the litter increases, this average is 
weighted more heavily toward the sample proportion. These fi tted values are 
often called shrinkage estimates because they “shrink” the fi tted probability 
from the sample proportion toward the population mean. Shrinkage is automatic 

Fig. 6. Monte Carlo samples from the posterior predictive distribution. The fi rst 
histogram represents a sample from the predictive distribution of the survival probabil-
ity of another litter from this population. The second histogram corresponds with a 
sample from the predictive distribution of the number of surviving pups from this 
additional litter, given that the litter is of size 10.

Table 2
Shrinkage

 Litter

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sample 1.00 1.00 1.00 1.00 0.91 0.90 0.90 0.89 0.89 0.80 0.78 0.57 0.50 0.50 0.30 0.00
Fitted 0.96 0.96 0.95 0.95 0.88 0.87 0.87 0.86 0.86 0.78 0.77 0.61 0.55 0.57 0.38 0.18

The sample proportion of surviving pups and the fi tted probability of survival are recored for each of the 16 litters. Each of the 
fi tted values is between the population mean (0.74) and the sample proportions for the particular litter.



338 Glickman and van Dyk

when the Bayesian posterior distribution is used to generate statistical 
estimates.

4. Other Resources
In this chapter, we have introduced only the most basic aspects of Bayesian 

modeling, methods, and computation. There are a number of accessible treatises 
on Bayesian methods that interested readers might refer to, including Gelman 
and others (4) and Carlin and Louis (5), both of whom offer excellent 
introductions.
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Overview of Missing Data Techniques

Ralph B. D’Agostino, Jr.

Summary
Missing data frequently arise in the course of research studies. Understanding the mechanism 

that led to the missing data is important in order for investigators to be able to perform analyses 
that will lead to proper inference. This chapter will review different missing data mechanisms, 
including random and non-random mechanisms. Basic methods will be presented using examples 
to illustrate approaches to analyzing data in the presence of missing data.

Key Words: Imputation, missing data mechanism, MAR, MCAR, nonignorable missing 
data

1. Introduction
In the previous 16 chapters, you have been presented with a variety of 

methods and techniques for analyzing data in order to make valid inference. In 
these previous chapters, a common assumption concerning the validity of the 
techniques has been that there is complete data available on all units measured 
in the experiment or study. The goal of this chapter is to present an overview 
of what can be done when this assumption is violated and missing data occurs 
on observations in an experiment or study.

Missing data frequently arise in the course of research studies. This phenom-
enon, though rarely intended, can have varying impact on the ability of inves-
tigators to draw proper conclusions concerning the relevance of their data. 
Often, the existence of missing data itself is not the issue that is of most impor-
tance, but rather understanding the mechanism that led to data being missing 
is most relevant. If one can understand the mechanisms that led to data being 
missing, then often appropriate analytical strategies can be used to handle its 
occurrence. This chapter will introduce basic concepts concerning approaches 
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to analyzing data in the presence of missing data. General concepts and termi-
nology will be presented as well as descriptions of analytical tools that can be 
used to address the missing data.

The focus of this chapter, as well as this book, is on analyses that researchers 
face often in laboratory settings. One may wonder if missing data is really an 
issue in the laboratory setting when most if not all aspects of an experiment are 
under the control of the investigator. Although this may appear to be the case, 
the reality is that missing data may often exist yet the investigator may not 
recognize this fact. Consider the following examples.

Example 1

An investigator wishes to test the impact of a new therapy on an outcome 
of cell proliferation measured in mice that are to be euthanized after 15 weeks 
of exposure. The investigator breeds 30 mice (that are genetically predisposed 
to develop prostate cancer) for the experiment and assigns 15 to receive the 
new treatment and 15 to receive a placebo treatment. Fourteen weeks into the 
experiment, 4 mice in the placebo group have died, whereas 1 mouse in the treat-
ment group has died. In the next week (week 15), when the primary outcome 
assessment is to be made on the mice, there are now 11 mice on placebo and 
14 mice on treatment. What data should be used for the 5 mice that died prior 
to week 15 and therefore do not have a week 15 assessment?

Example 2

Consider a laboratory experiment where one wishes to study the cleavage of 
certain proteins to different enzymes. The whole experiment is conducted using 
test tubes, and the goal of the experiment is to expose one set of proteins to a 
new compound and to expose a different set to an existing compound. At 6 
fi xed time points (0, 15, 30, 45, 60, and 75 min), a fi xed amount of protein is 
to be extracted from the test tube and measured for its cleavage to a different 
enzyme. What happens if a test tube is dropped after the fi rst 3 measurements 
are made but prior to the last 3 assessments? What happens if the investigator 
cannot be present for the 60-min assessment for some of the tubes and it does 
not take place until 73 min? How should these data be handled?

The remainder of this chapter will present methods that may be useful in 
confronting situations similar to these as well as other ones that may occur in 
laboratory research settings. Section 2 will introduce notation and terminology 
useful for describing the missing data mechanism. Section 3 discusses missing 
data mechanisms. Section 4 will present an overview of ad hoc procedures that 
have been suggested for handling missing data and, where appropriate, describe 
their shortcomings. Section 5 will present 2 model-based approaches to missing 
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data including a brief overview of the concept of multiple imputation. Finally, 
Section 6 will present a summary and list appropriate references to examine 
for more thorough handling of missing data.

2. Notation
To illustrate the concepts of missing data, consider a simple example where 

there are 2 variables, one outcome, referred to as Y, and one predictor variable, 
referred to as X. In Table 1, there are n total observations, k with complete data 
and m with the outcome Y missing. Both X and Y can be partitioned into their 
observed and missing parts as follows: Y = (Yobs, Ymis) and X = (Xobs, Xmis), where 
Yobs and Xobs represent the observed parts of Y and X, respectively, and Ymis and
Xmis represent the missing parts of Y and X. In the above example, X = Xobs,
because X has no missing data, whereas Yobs is represented by the fi rst k obser-
vations of Y and Ymis is represented by the m observations where Y is missing. 
In addition, we defi ne the response indicator, Ri, as an indicator variable that 
equals 1 if the ith observation (i = 1,  .  .  .  , n) is observed and 0 if the ith obser-
vation is missing. For each variable in a data set (i.e., in the above X and Y),
there is a corresponding response indicator. Thus, in our example, the response 
indicator corresponding with X is equal to 1 for all observations, whereas the 
response indicator for Y is equal to 1 for observations 1 through k and 0 for 
observations (k + 1) to (k + m) = n.

3. Missing Data Mechanisms
In most discussions concerning how to handle missing data, it is generally 

agreed that the most important step to decide how to handle missing data is to 
determine what mechanism led to the data being missing in the fi rst place. 
Intuitively, one can imagine that one would analyze the same set of data dif-
ferently if the mechanism that led to the data being missing were different. For 
instance, for the example introduced at the beginning of the chapter where 
levels of cell proliferation are to be compared between 2 groups after a fi xed 
period of time, consider these 2 scenarios. Scenario 1: From the original 30 

Table 1
Illustration of Notation and Missing Data

Unit X Y

1 Observed Observed
2 Observed Observed
k Observed Observed
k + 1 Observed Missing
k + m = n Observed Missing
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animals (15 per group), you are given data on 25 (14 from group A and 11 
from group B) and told that the missing data on the 5 animals occurred because 
when performing the measurements, there was a power outage and the data on 
those 5 animals was lost. Scenario 2: The 5 animals with missing data all died 
prior to the time point when cell proliferation measures could be made.

Clearly, the mechanism by which the data came to be missing in these 2 
scenarios is different, and in fact knowing the mechanism in this example is 
likely to infl uence how you would analyze the observed data. Intuitively, you 
would imagine that the observed data from Scenario 1 would represent a 
relatively accurate description of the difference between the 2 groups because 
the missing data seemed to have been generated by a “random” mechanism. 
However, you may not feel the same about the data generated in Scenario 2.
Here you have one group with less data (group B has 11 observations vs. 14 
in group A) and the fact that data is missing may in fact be linked to the 
outcome of interest. In this case, one might argue that the mechanism that led 
to missing data was not random.

In order to describe the missing data mechanism, we must examine the prob-
ability (Pr) that response indicator equals 1 for a variable, conditional on the 
values for that variable taken on by the observed and missing observations. We 
denote this by

Pr(R | Yobs, Ymis).

3.1. Missing Completely at Random

In the fi rst scenario just described, the probability that a particular animal 
is missing its measure of cell proliferation does not depend on observed or 
unobserved measurements of cell proliferation (if we assume that the power 
outage itself was not related to the experiment being performed). This can be 
written as

Pr(R | Yobs, Ymis) = Pr(R).

When this relationship exists, we refer to the missing data mechanism as 
missing completely at random (MCAR) (1,2). In other settings, this mechanism 
may be referred to as uniform nonresponse (i.e., in the sample survey 
literature).

When data are MCAR, we can perform analyses using complete data tech-
niques, described in the previous 16 chapters, and still arrive at consistent 
results. In general, there will be a loss of power (and information) in these 
studies because of the missing data. This occurs because the variability of sta-
tistics used in treatment comparisons is reduced as the sample size increases, 
and thus because missing data reduces the sample size available, this in turn 
increases variability. Still, when MCAR is present, one can perform analyses 
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using only those units with complete data (often referred to as completers) and 
still be confi dent that valid inferences can be made.

3.2. Missing at Random

Although MCAR may occur in many settings, one can clearly imagine there 
are settings where data are not missing completely at random, yet the missing data 
are not linked directly to the values of the unobserved data as would be the impli-
cation of Scenario 2 above. A question that arises is whether there exist other 
mechanisms (other than MCAR) where one can perform valid analyses in the 
presence of missing data, and the answer is yes as long as the missing data mecha-
nism itself does not depend on the unobserved data. This can be written as

Pr(R | Yobs, Ymis) = Pr(R | Yobs),

and when this condition is met, we refer to the missing data as missing at 
random (MAR) (1,2). In words, this means that if several characteristics are 
measured on units in a study, then the statistical relationship among these char-
acteristics (variables) remains the same whether or not they are observed or 
missing for each unit. For example, see Table 2. There is a clear relationship 
among units 1, 2, 3, and 4 when all four are observed. Under MAR, variables
3 and 4 for unit 4 will have the same distribution as variables 3 and 4 from 
units 1, 2, and 3.

At times, the word random in MAR causes confusion because the probability 
of a value being missing often does depend on observed values of the data and 
therefore does not appear to be “random.” This confusion is justifi ed. As the 
nomenclature for missing data has used this term for many years, one must 
understand its particular meaning and remember here that the important concept 
is that when data are MAR, the missing value mechanism can be described 
solely in terms of the observed observations.

It should be noted that in general, it is diffi cult to prove that data from a 
particular study are in fact MAR, however there are many situations where 

Table 2
Illustration of Data Where the Missing Data Are 
MAR

 Variables

Unit 1 2 3 4

1  2  3  4  5
2  5 10 15 20
3  8 15 22 29
4 10 22 ? ?
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given the description of how data were collected, one can infer that the missing 
data mechanism is likely to be MAR. An example that may arise in many 
experiments or trials is that a characteristic is to be measured on a unit twice 
at the same visit (i.e., systolic blood pressure). Many protocols state that if the 
2 measurements differ by a certain amount, a third measurement will be taken 
as well, however for most units this third measurement will be missing at each 
visit. This missing data mechanism is clearly not MCAR but it would be con-
sidered to be MAR.

One should be aware that situations may arise where data is MCAR within 
classes and MAR overall. For instance, consider an experiment where 2 obser-
vations are made: a mouse’s overall weight and a mouse’s level of a certain 
biomarker that is known to exist and is related to the mouse’s weight. The 
sensitivity of the instruments used to detect the biomarker is such that for many 
small mice, the actual value of the biomarker cannot be recorded by the instru-
ment and appears as a missing value. In this example, if one were to look at 
the data from the biomarker and take a simple average of the values from those 
mice with data, the mean would be upwardly biased because many of the small 
mice would have missing data for the biomarker.

However, if one were to group mice by weight, then conditional on a mouse’s 
weight the missing data for the biomarker is random. Then, the biomarker data 
is missing at random because the mechanism that led to the missing data 
depends on the mouse’s weight. In other words, once we know a mouse’s 
weight, the missingness does not depend on the value of the biomarker itself.

We can then estimate the overall mean of the biomarker in the experiment 
by taking averages of the observed biomarker data within groups of mice with 
similar weights. We then combine these stratifi ed estimates together, weighting 
each by the proportion of total mice in each group. For instance, consider the 
following illustration. In an experiment there were 20 total mice: 10 with high 
weight and observed biomarker data with a mean value for the biomarker data 
of 15, and 10 with low weight of which 6 have observed biomarker data with 
a mean value of the biomarker data of 25 and 4 have missing data for the bio-
marker data. If we had taken an average of the observed data for the biomarker, 
we would get 18.75 {i.e., [(10 × 15) + (6 × 25)]/16 = 18.75}. However, if we 
average the 2 strata, we get the mean for the biomarker data to be 20 (the 
average of 15 in the high-weight group with 25 in the low-weight group). In 
this way, the 6 low-weight mice with observed biomarker data are contributing 
information into the estimate as if they were 10 mice.

This example illustrates how simple summary statistics (the average of the 
16 observed biomarker values) would be biased, whereas by using a model that 
appropriately takes into account the MAR structure of the data, by conditioning 
on the mouse’s observed weight, an unbiased estimate is derived. In general, 
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likelihood-based methods, which have been discussed in the previous chapters, 
are valid when data are MAR.

3.3. Missing Not at Random/Non-ignorable Missing Data

MAR and MCAR describe two possible ways that data can be missing; the 
third and fi nal way we describe missing data is when Pr(R | Yobs, Ymis) depends 
on both the observed and missing parts of Y and therefore cannot be explained 
or modeled easily. When this type of data arises we often refer to the missing 
data mechanism as being non-ignorable because the distribution of R, the 
response indicator, cannot be explained or modeled easily and therefore cannot 
be ignored when using likelihood methods for inference. When data are MAR, 
the missing data mechanism was considered ignorable because one could 
ignore it when making likelihood-based inference once one conditioned on the 
observed data.

The implication of nonignorable missing data is that the reason some obser-
vations are missing depends on the unobserved observations themselves. In the 
biomarker example above, had the researcher not recorded the weight of the 
mice in the experiment but had only recorded the values of the biomarker data, 
then the mechanism would have not been ignorable and the data would not have 
been MAR. In order for inference to be made when the missing data mechanism 
is non-ignorable, one has to model both Y and R (the data and response indica-
tor) jointly to make inference about Y.

In general, there is no easy way to prove that data are MAR, MCAR or 
missing not at random (MNAR). Usually one can make reasonable assumptions 
concerning the origin of missing data and based on those assumptions deter-
mine which mechanism led to the missing data. If data are determined to be 
MNAR, it is often diffi cult to determine an appropriate model for the response 
indicator.

4. Ad Hoc Methods for Handling Missing Data
There are many ad hoc methods that investigators use to handle missing data, 

and in general these methods are not advisable to be used except in certain 
specifi c problems or circumstances. We now describe a few of these methods 
and point out their shortcomings. In particular, we describe analyses that use 
completers only, analyses that use a method called last observation carried 
forward, and simple mean or regression imputation.

4.1. Complete Case Analysis

Complete case analysis, as its name implies, is an analysis that uses only 
units that have complete data. All units that have missing data are removed 
from the analyses. As pointed out above, if data are MCAR, then analyses based 
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on completers will not be biased and therefore can be used; however, even in 
this situation, one must proceed with caution. When a completer’s analysis is 
performed, one has reduced the sample size from the original intent of the study. 
This implies that the planned study power is no longer being maintained, and 
thus treatment effects may not be detected with this reduced power.

In experiments that require examining the relationship among several varia-
bles in a sequential manner, one is often confronted with fi tting a series of 
models with different units included in each model. For instance, consider the 
hypothetical data measured in an experiment using 18 mice and presented in 
Table 3. The question of interest is whether a particular treatment (A or B)
predicts the weight of mice after controlling for the effects of three biomarkers. 
To look at this, using completers only, a series of models would be fi t. The fi rst 
could include all 18 mice to see the effect of treatment on weight. Next, a model 
that includes the fi rst 13 mice and mouse 15 and mouse 16 could look at the 
effect of treatment on weight while adjusting for biomarker 1. A third model 
could look at the impact of treatment and biomarker 2 on weight, but this 
would exclude mice 13, 14, 16, and 18. Additional models could be fi t to look 
at biomarker 3 or some combination of biomarkers 1, 2, and 3. Each model 
would include a different subset of mice, until fi nally the full model would only 

Table 3
Hypothesized Data from 18 Mice

Mouse Biomarker 1 Biomarker 2 Biomarker 3 Weight Treatment

1 1.4 4.4 9.1 101 A
2 2.9 5.4 8.4 121 B
3 1.2 4.2 7.7 118 A
4 2.6 3.4 9.4 141 B
5 2.1 4.4 8.5 131 B
6 1.2 6.2 6.7 125 A
7 1.9 7.1 9.1 108 A
8 0.8 3.1 6.1 132 B
9 2.4 8.0 9.3 128 A

10 1.1 5.4 7.2 140 B
11 1.9 5.6 8.8 102 A
12 2.0 5.3 7.5 109 B
13 3.2 ? 9.9 121 A
14 ? ? ? 114 B
15 2.4 6.1 ? 125 A
16 1.5 ? ? 110 B
17 ? 4.6 8.3 131 A
18 ? ? 9.1 139 B
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include the fi rst 12 mice, because they are the only mice with totally complete 
data. In general, even if one assumes MCAR, one might be concerned that 
results from analyses using data such as this may be infl uenced as much by 
which subset of mice are included in each analysis as by a real scientifi c rela-
tionship between treatment and weight. If the data are not MCAR, then analyses 
based on completers only will be biased and not result in valid inferences.

4.2. Last Observation Carried Forward

Last observation carried forward (LOCF) is a method that can only be used 
in experiments with longitudinal follow-up. Essentially, this method takes the 
last observation measured in a longitudinal study and uses it to impute future 
missing observations. For instance, if the data in Table 4 were observed on 4 
units in an experiment, the LOCF method would consider the visit 4 and 5
values for unit 2 to be 7, because that was the last observed value for unit 2.
Likewise, the visit 4 and 5 values for unit 3 would be considered 12, because 
that was the last observed value. For unit 4, we imputed visits 3 and 5 with 
the data from visits 2 and 4.

Using this method, all missing data are fi lled in, and analyses are then per-
formed as if there were no missing data. This method will nearly always 
produce incorrect treatment effect estimates and measures of variability, regard-
less of whether the data are MCAR, MAR, or MNAR. The severity of the 
potential bias introduced by using this method depends on the actual mecha-
nism that led to the missing data and the particular treatment effect estimate 
over time. For instance, in the simple example above, one can see clearly that 
there appears to be a predictable reduction in the variable measured over time 
for each of the 3 units. Using the LOCF method, it appears at time 5 that there 
is a large difference among the 4 units (3, 7, 12, and 9).

Although it may seem clear that the LOCF method will almost always 
present incorrect information for inference, it is still widely used in many set-
tings. One reason is because it is easy to implement as no models need to be 
fi t, and it allows all units to be included in the fi nal analysis. Often, when LOCF 

Table 4
Illustration of Data for LOCF Example

 Visit

Unit 1 2 3 4 5

1 10  8  6 5 3
2 11  9  7 ? (7) ? (7)
3 20 16 12 ? (12) ? (12)
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is presented in analyses, it is shown as one of several approaches for handling 
missing data and is presented as part of a sensitivity analysis. Thus, investiga-
tors who use LOCF usually understand that the results based on the analysis 
are not correct, but they argue that the results may give some understand-
ing concerning a range of what outcomes are possible. Much research has 
been done to suggest that even in this case, using LOCF is not an optimal 
technique (3).

4.3. Mean/Regression Imputation

Additional ad hoc methods that are often used in practice are to perform 
some form of simple imputation in order to fi ll in the missing data that is based 
on the observed data. The easiest version is referred to as mean imputation, and 
this method estimates the mean based on observed data for each variable in a 
study. Using the data from Table 3, we see that the mean value for the observed 
data in biomarker 1 is 1.91. This estimated mean is then imputed into all 
missing values for that variable (mice 14, 17, and 18). This process is repeated 
for biomarkers 2 and 3 as well. The intuitive appeal of this method is that the 
overall mean in each group does not change after the imputation is performed, 
and this method results in a complete data set to be analyzed using all of the 
original participants. The disadvantages are that this method will underestimate 
the variability of each of the individual variables where imputation occurs 
because imputation of a mean value will not increase the variance estimate for 
a variable by defi nition (as the variance estimate calculates the squared dis-
tances of each observation from the mean and averages these over the data, and 
therefore observed values at the mean contribute no extra variability to this 
estimate). A second disadvantage to this approach is that it ignores any possible 
relationship among variables measured in a study. Therefore, it is likely to bias 
any analyses that involve estimating associations or regression models.

A second simple imputation method that is used by investigators is referred 
to as regression mean imputation. In this approach, participants with complete 
data are used to estimate regression equations describing the relationship 
between variables with missing data to the remaining variables. For instance, 
consider the data from Table 3 again. There is data missing for biomarkers 1, 
2, and 3. The fi rst 12 observations have complete data, thus a regression model 
predicting biomarker 1 based on biomarkers 2 and 3, and treatment would 
be fi t using these 12 observations. The resulting regression equation is

(Biomarker 1) = −2.00 + 0.161(biomarker 2) + 0.461(biomarker 3) −
 0.003 Weight − 0.807 (treatment A).

Thus, using this equation, one would use the observed values for mouse 17
(biomarker 2 = 4.6, biomarker 3 = 8.3, weight = 131, treatment = A) to 
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predict biomarker 1 to be 1.37. To determine the predicted value for units that 
have more than 1 missing data point (i.e., mouse 16 missing biomarker 2 and 
biomarker 3), one can proceed in 1 of 2 ways. The fi rst would be to fi t a model 
predicting biomarker 2 using biomarker 1 and treatment and then imputing 
the predicted value for this variable. Next, a model using biomarker 1, biomar-
ker 2, and treatment would be fi t to predict biomarker 3 and the observed 
values for biomarker 1 and treatment and the imputed value for biomarker
2 will be used to predict biomarker 3. (Note: This process could have been 
performed in reverse order predicting biomarker 3 fi rst and then biomarker
2.) An alternative approach would be to fi t 2 models both with biomarker 1
and treatment as predictors to determine predicted values for biomarker 2
and biomarker 3, respectively.

This imputation approach is better than a simple mean imputation approach 
because it can maintain unbiased estimates of statistics such as means, correla-
tions, and regression coeffi cients. However, the variance associated with this 
statistic will be underestimated using this approach (3).

5. Model-Based Approaches to Missing Data
5.1. Likelihood-Based Modeling

A common theme of the ad hoc methods discussed above was to develop a 
method to handle the missing data that created a “complete data” set on which 
to perform analyses (either by imputation or restricting the analysis to com-
pleters). We now describe methods that focus on estimating summary statistics 
to be used to make inference without actually imputing any values into the data 
set. These approaches do not propose to impute a specifi c value of a measure-
ment into missing data but rather propose to estimate an appropriate summary 
statistic that incorporates all information from units with both observed and 
missing data.

To implement this method, one needs to have a statistical model specifi ed 
for the complete data. Using this model, one then determines what the likeli-
hood for the model is and then based on assumptions concerning the missing 
data mechanism, the likelihood is maximized.

Recall, Y = (Yobs, Ymis) where Ymis denotes the missing values and Yobs denotes 
the observed values of Y. If we denote f(Y |q) as f(Yobs, Ymis | q) as the density 
function of the joint distribution of Yobs and Ymis and q are the unknown param-
eters for the distribution of Y, then the marginal density of Yobs is

f Y f Y Y dYobs obs mis mis( | ) ( | ) .θ θ= ∫ ,

Using this, we can defi ne the likelihood of q based on Yobs ignoring the 
missing data mechanism to be any function of q proportional to f(Yobs | q) because 
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L(q | Yobs) ∝ f(Yobs | q) where L is the likelihood. When the missing data mecha-
nism is ignorable (i.e., if the missing data is MAR or MCAR), then inference 
can be based on the likelihood using the observed data only L(q | Yobs) (2).

To show this more clearly, consider the joint distribution of Y and R (the 
response indicator). We can express this as the distribution of Y and the condi-
tional distribution of R given Y:

f(Y, R |q,y) = f(Y |q)f(R |Y,y)

where ψ is the unknown parameter from the distribution of the missing data 
indicator.

The observed data are only (Yobs, R), and thus the distribution of the observed 
data can be found if one integrates Ymis out of the joint density of (Y, R) where 
Y = (Yobs, Ymis),

f Y R f Y Y f R Y Y dYobs obs mis obs mis mis( | ) ( | ) ( | ) ., , , , ,θ ψ θ= ∫ ψ

Using this joint distribution, we can see that the likelihood for the parameters 
q and ψ is any function of q and ψ proportional to f(Yobs, R|q, ψ):

L(q, ψ |Yobs, R) ∝ f(Yobs, R |q, ψ).

If the distribution of the missing data indicator does not depend on Ymis(f(R | Yobs,
Ymis, ψ) = f(R | Yobs, ψ)), then it can be shown that

f Y R f R Y f Y Y dY

f R Y f

obs obs obs mis mis

obs

( | ) ( | , ) ( )

( | )

, , , ,

,

θ ψ θ=

=
∫ψ

ψ (( | ).Yobs θ

When the above is satisfi ed, then the missing data mechanism is considered to 
be ignorable and thus inference concerning the parameter q can be made using 
the likelihood based only on the observed data, Yobs (2).

In many real data applications, one assumes that the missing data mechanism 
is ignorable and such common statistical modeling techniques that use linear 
mixed models (models that have both fi xed and random effects included, see 
Chapter 11) are able to handle missing data in their estimation approach. The 
mixed models are valid when the data are MAR.

5.2. Stochastic Imputation: Single and Multiple

Above, we discussed some ad hoc imputation strategies (mean and regres-
sion imputation), but each of these had limitations because they would under-
estimate the true variability that would have existed in the data had the missing 
data been observed. A better imputation strategy is to impute values that are 
chosen randomly from an appropriate distribution of potential values for the 
missing data (3).
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For instance, in the biomarker example above, the mean value for the 
observed data for biomarker 1 was 1.91 with a standard deviation of 0.706. If 
we assumed that the distribution of values that this data comes from was a 
Normal distribution, then we could generate a Normal distribution with mean 
1.91 and standard deviation 0.706 (using a statistical software package such as 
SAS) and then choose 3 random values from this distribution to impute into 
the missing values from the data. The expected value for any of these random 
draws would be 1.91, but the actual values chosen would likely vary around 
that value.

We can perform a similar imputation using the regression imputation strat-
egy described earlier, where instead of imputing the predicted value from the 
regression equation, we would defi ne the distribution of the predicted values 
(mean and standard deviation at the particular set of observed predictors) and 
use this distribution to choose random observations to impute into the data set 
in place of missing observations.

Both of these imputation methods provide better estimates of the variability 
of the data than the ad hoc methods described earlier (recall that the ad hoc
methods did provide unbiased estimates of the mean values for the variables 
with missing data but had underestimated the variability). However, estimating 
the correct variance for a variable that contains missing data after using an 
imputation strategy is still somewhat complicated. Imagine if several investiga-
tors were given the same data set that contained missing values and were told 
to impute the values using an imputation strategy that takes random draws from 
an appropriate distribution. Each investigator will likely get a different set of 
imputed values and thus a different estimate of the variability of the variable 
that had contained missing data. Because each of these individual variability 
estimates are in fact estimates of the true variability estimates, if one were to 
examine the variability among each investigator’s imputed data set, an estimate 
of the true variability could be derived.

This concept was then formalized to say rather than asking several investi-
gators to each impute data into the same data set, each investigator should 
perform this “multiple” imputation on his or her own. Thus, several sets of 
complete data would be generated and analyzed as complete data to make infer-
ence. The variance estimate from an analysis that uses a multiple imputation 
approach combines the within-imputation and between-imputation components 
of variance to get an overall variance estimate. Details of this can be found in 
Rubin (4).

6. Conclusion
Missing data is a reality in research. Despite the best efforts of researchers 

to control their experiments, unforeseen events can (and do) occur. Therefore, 
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one must be prepared to handle the presence of missing data in research. Much 
of this chapter has focused on describing approaches to handling missing data 
if the data are MCAR or MAR. The reason for this is because under those sce-
narios, principled approaches can be applied to handling the missing data, and 
research has shown that valid inference can be made. There is a growing sta-
tistical literature for handling the more diffi cult situation of a nonignorable 
missing data mechanism. The diffi culties that arise in this situation are that one 
must carefully specify what the nonignorable mechanism is in order to make 
inference, and yet often there is little opportunity to validate whether the correct 
specifi cations have been made.

This chapter has introduced the reader to some of the concepts that surround 
the handling of missing data in applications. An introduction of terminology 
and a brief overview of methods to handle missing data have been presented 
to meet the goal of educating the researcher about missing data problems. 
Ultimately, an appropriate analysis that incorporates missing data often needs 
to be performed in collaboration with a trained statistician, and we would 
encourage the applied researcher to seek such collaboration when missing data 
problems arise. In addition to this chapter, there are several useful references 
(1–7) that describe much of the methodology in this chapter, particularly a Web 
page maintained by James Carpenter and Mike Kenward (3) that provides 
useful descriptions of missing data techniques presented in an easily accessible 
format as well as an extensive bibliography of related materials.
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Statistical Topics in the Laboratory Sciences

Curtis A. Parvin

Summary
This chapter concerns statistical concepts and procedures that are applicable to diagnostic 

testing performed in the clinical laboratory. Three important laboratory issues are addressed: the 
estimation of analytical imprecision, the design of an effective laboratory quality control strategy, 
and the establishment of population reference ranges. These three topics were selected because 
each demonstrates a valuable statistical principle. Estimation of analytical imprecision highlights 
the important role of study design. Evaluating laboratory quality control strategies emphasizes 
the importance of choosing appropriate statistical models. The estimation of population reference 
ranges demonstrates that there can be many different approaches to developing good statistical 
estimators.

Key Words: Quality control; reference limits; variance components.

1. Introduction
This chapter concerns statistical concepts and procedures that are applicable 

to diagnostic testing performed in the clinical laboratory. The life cycle of a 
laboratory test is generally divided into preanalytical, analytical, and postana-
lytical phases. The preanalytical phase encompasses patient preparation, sample 
collection, and transport to the laboratory. The analytical phase involves the 
measurement of quantities in tissues and body fl uids. The postanalytical phase 
relates to reporting and interpretation of laboratory test results. There are many 
interesting statistical issues that arise within each of these 3 phases; more than 
can be addressed in a single chapter. This chapter will address 3 common 
statistical problems faced by most laboratories: characterizing the analytical 
imprecision of an assay, determining a quality-control testing strategy to ensure 
that accurate results are produced, and establishing population reference ranges. 
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These 3 topics demonstrate the role that statistical thinking can play in the labo-
ratory with respect to issues such as study design, statistical modeling, and 
robust estimation.

2. Estimating Analytical Imprecision
2.1. The Precision Performance Study

One of the important characteristics of a laboratory assay that determines its 
medical usefulness is its inherent analytical imprecision. The purpose of a preci-
sion performance study is to estimate the total analytical variability of an assay, 
and additionally to estimate the relative magnitudes of the different variance 
components that contribute to the total. The analytical imprecision of an assay 
often depends on the concentration of the analyte being measured. Therefore, 
imprecision should generally be estimated at multiple concentration levels 
throughout the concentration range of an assay.

The different sources of variability constituting total analytical imprecision 
will depend on the particular assay and testing environment, but a common 
approach to variance estimation divides total imprecision into 3 components: 
day-to-day variability, batch-to-batch variability within a day, and within-batch 
variability. The statistical model representing this situation can be given as

Yijk = m + ai + bj(i) + ek(ij).

This is a nested random effects analysis of variance (ANOVA) model (1). Yijk

represents the kth measured value from the jth batch on the ith day, m is the 
true concentration, ai is the random error component for the ith day, bj(i) is 
the random error component for the jth batch within the ith day, and ek(ij) is the 
random error associated with the kth measurement in the jth batch on the ith
day. It is generally assumed that ai, bj(i), and ek(ij) are independently distributed 
Normal random variables with zero means and variances s2

a, s 2
b, and s 2

e, respec-
tively. Assuming this model, the total analytical variance associated with a 
single measurement, Yijk, is

sY
2 = sa

2 + sb
2 + se

2.

In order to compute estimates of the variance components, data are obtained 
by performing multiple assays per batch, with multiple batches per day, over 
multiple days. A commonly employed precision performance experiment will 
use stable pools of test material at a minimum of 2 concentration levels (one 
low and one high) and will analyze 2 samples at each concentration level in a 
batch, with 2 batches performed each day for at least 20 days (2).

There are a number of different methods available for estimating variance 
component models. The more sophisticated methods require advanced statisti-
cal software such as SAS (3). If the experiment is performed using a balanced 
design, meaning that the number of replicates within each batch and the number 
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of batches performed each day are constant, then the classic method of moments
estimators are relatively easy to calculate without the need for advanced 
software, and the equations provide some useful insights regarding variance 
estimation.

Assume data are collected for n1 days with n2 batches per day and n3 mea-
surements per batch at each concentration level. Four different sample variance 
estimates can be defi ned:
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In these equations, ȳij. denotes the average of the n3 measurements in the jth
batch performed on the ith day, ȳi.. denotes the average of all n2n3 measurements 
assayed on the ith day, and ȳ ...  denotes the average of all n1n2n3 measurements. 
The between-day formula computes the sample variance of the daily averages. 
The between-batch formula averages the n1 sample variances computed 
from the batch averages within a day. The between-replicates formula averages 
the n1n2 sample variances computed from the replicate measurements within 
each batch. The total formula calculates the sample variance using all the indi-
vidual measurements.

What do these 4 sample variances estimate? Phrased another way, what are 
their expected values? The expected value of the average of the n1n2 within-
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batch sample variances is s 2
e. So s2

e provides an unbiased estimate of s 2
e.

However, the expected value of s2
b is not equal to the batch-to-batch variance 

s 2
b but rather it is equal to s 2

b + s 2
e /n3. The reason for this is that the batch aver-

ages, ȳij., used in the computation of s2
b, still possess a component of within-

batch variability equal to s 2
e /n3. Thus, the expected value of the between-batch 

sample variance equals the between-batch variance plus this additional compo-
nent of the within-batch variance that depends on the number of replicates per 
batch. However, an unbiased estimate of s 2

b can be obtained by computing s2
b

− s2
e/n3. The same reasoning can be used to show that the expected value of the 

between-day sample variance s2
a is not the day-to-day variance component s 2

a,
but rather the between-day variance with an additional component of between-
batch variance that depends on the number of batches per day and an additional 
component of within-batch variance that depends on the number of batches per 
day and the number of measurements per batch, s 2

a + s 2
b/n2 + s 2

e /n2n3. An 
unbiased estimate of s 2

a can be obtained by computing s2
a − s2

b/n2.
Thus unbiased estimates for each variance component can be obtained as

 ŝ 2
e = S2

e

 ŝ 2
b = s2

b − s2
e /n3

ŝ 2
a = s2

a − s2
b /n2,

and an unbiased estimate for total analytical imprecision is then

ŝ 2
Y = ŝ 2

a + ŝ 2
b − ŝ 2

e.

Note that when computing ŝ 2
a and ŝ 2

b, it is possible to obtain values that are 
less than zero. If a value less than zero is obtained, it is standard practice to set 
it to zero when computing ŝ 2

Y. Many advanced statistical software packages 
implement more sophisticated methods such as restricted maximum likelihood 
(REML) estimation that will always produce nonnegative variance component 
estimates (3). Additionally, most statistical software packages can estimate 
variance components when the study data are not completely balanced (n2 and 
n3 not necessarily constant).

Lastly, it is interesting to examine the expected value of the sample variance 
computed from all of the individual measurements, s2

Y. A simple way to deter-
mine the expected value of s2

Y is to make use of the algebraic identity

y y y y y y y yijk ijk ij ij i i
k

n
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or

(n1n2n3 − 1)s2
Y = n1n2(n3 − 1)s2

e + n1n3(n2 − 1)s2
b + n2n3(n1 − 1)s2

a.
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Thus

(n1n2n3 − 1)E(s2
Y) = n1n2(n3 − 1)E(s2

e) + n1n3(n2 − 1)E(s2
b) + n2n3(n1 − 1)E(s2

a),

where E() denotes expected value. Substituting for the expected values of s2
e,

s2
b, and s2

a, dividing by (n1n2n3 − 1) and combining terms gives

E s
n n n n

n n n

n n n n n

n n n
Y
2 2 1 2 3 3

1 2 3

2 1 2 3 2 3

1 2 31 1
( ) = +

−( )
−( )

+
−( )

−(
σ σε β ))

σα
2 .

Note that if the number of measurements per batch, n3, and the number of 
batches per day, n2, are >1, then E(s2

Y) < s 2
a + s 2

b + s 2
e. This implies that 

E(s2
Y) < s 2

Y unless both s 2
a and s 2

b are equal to zero. Therefore, estimating total 
analytical variance, s 2

Y using the sample variance estimate, s2
Y, will tend to 

produce estimates that are, on average, too small.

2.2. Confi dence Interval for Total Imprecision

Although estimates of the variance components are important for the labora-
tory to understand the different sources of variability that contribute to total 
analytical imprecision, in the end it is the estimate of total analytical impreci-
sion that is most important. The reliability of the estimate of total variance will 
depend on the study design and the number of measurements. Computing a 
confi dence interval for total imprecision is a useful way of conveying the 
reliability of the estimate of total analytical imprecision.

Assuming the measurement error distributions are approximately normal, 
Satterthwaite (4) describes a method for approximating the distribution of a 
linear combination of independent mean squares. Let ŝ 2 = a1MS1 + a2MS2

+  .  .  .  , and let the degrees of freedom associated with each mean square be 
denoted d.f.1, d.f.2,  .  .  .  , respectively. Compute

d.f.
MS MS . . .

MS
d.f.

MS
d.f.

. . .

.� =
+ +( )

( ) + ( ) +

a a

a a
1 1 2 2

2

1 1
2

1

2 2
2

2

Then the distribution of ŝ 2 is approximately related to a chi-square distribution 
with d̂.f. degrees of freedom. For the precision study design described above, 
the sources of variation and associated mean squares are given in Table 1. The 
mean squares (MS) are defi ned as SS/d.f. They are related to the sample vari-
ance estimates defi ned earlier: s2

a = MSD/(n2n3), s2
b = MSB/n3, and s2

e = MSR. The 
estimate of total analytical imprecision can be written in terms of the mean 
squares as: ŝ 2

Y = MSD/(n2n3) + (n2 − 1)MSB/(n2n3) + (n3 − 1)MSR/n3. This is a 
linear combination of independent mean squares with a1 = 1/(n2n3), a2 = (n2 −
1)/(n2n3), a3 = (n3 − 1)/n3 and therefore, by Satterthwaite’s approximation
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d.f.
MS MS MS

MS MS
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An approximate 95% confi dence interval for total analytical imprecision can 
be computed as;

ˆ d.f.

d.f.
ˆ d.f.

d.f.. .

σ
χ

σ
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Y Y

�
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�

�
0 975
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⎞

⎠
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where c2
p(d.f.) denotes the pth percentile of the chi-square distribution with d.f. 

degrees of freedom. Many modern software packages will provide a function 
that computes the percentiles of the chi-square distribution. In the Stata statisti-
cal software package (StatCorp. College Station, Tex.), the function invchi2 
(d.f., p) will return the pth percentile of the chi-square distribution with d.f. 
degrees of freedom.

As an example of the above calculations, assume a precision study was 
carried out over 20 days with 2 batches run per day, 2 replicates assayed within 
each batch, and the estimated sample variances are s2

a = 2.8, s2
b = 3.4, and 

s2
e = 3.6. Then

ˆ .

ˆ . . .

ˆ . . .

σ
σ

σ

ε
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2

2

2

3 6

3 4 3 6 2 1 6

2 8 3 4 2 1 1

=
= − =

= − = ,

and an estimate of total analytical imprecision is ˆ . . . .σY = + + =1 1 1 6 3 6 2 51.
Additionally, MSD = 4(2.8) = 11.2, MSB = 2(3.4) = 6.8, MSR = 3.6, a1 = 1/4, 
a2 = 1/4, a3 = 1/2, and

Table 1
Analysis of Variance (ANOVA) Table for a Nested Random Effects Design

Source SS d.f. MS E(MS)

Day n n y yi
i

n
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Using Stata’s invchi2 function, c 2
0.975(62.20) = 85.89, c 2

0.025(62.20) = 42.29 and 
a 95% confi dence interval for total analytical imprecision is
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3. Designing a Laboratory Quality Control Strategy
3.1. Defi ning Laboratory Quality

Before an assay is implemented in the laboratory, a thorough evaluation of 
its analytical performance characteristics is undertaken. This includes estima-
tion of analytical imprecision, determination of the linear range of the assay, 
and identifi cation of potential interfering substances. Once the assay is put into 
production, it is necessary to have a process in place to ensure that the expected 
performance characteristics of the assay are maintained. Particularly, any unde-
tected “drift” in an assay will result in an additional component of measurement 
error in the reported results that could adversely impact the clinical manage-
ment of patients. The purpose of laboratory quality control (QC) procedures is 
to detect clinically important changes from the stable operating characteristics 
of an assay in order to prevent results with medically important errors from 
being produced and reported. Statistical models of a laboratory’s analytical 
measurement processes during the presence of various out-of-control error 
states provide a mechanism for evaluating and comparing the performance of 
alternative QC strategies.

Let the in-control testing process be modeled as

Xi = mX + ei ,

where Xi is the measured result for the ith patient. The parameter mX is the true 
unknown concentration of the patient’s sample, and ei is the random measure-
ment error due to analytical imprecision of the assay. Assume ei is normally 
distributed with mean = 0 and variance = s 2g2(mX). If g(mX) = 1, then the 
assay has constant variance independent of the concentration of the sample. If 
g(mX) = mX, then the assay has a constant coeffi cient of variation (CV). The coeffi -
cient of variation is defi ned as the standard deviation divided by the mean, so 
if g(mX) = mX, then CV = smX/mX = s. These are the 2 most common assumptions 
regarding analytical imprecision.
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Let the out-of-control testing process be modeled as

Xi = mX + d(mX) + qei .

The parameters d(mX) and q represent possible out-of-control states. When 
d(mX) = 0 and q = 1, the assay is operating in its stable in-control state. If d(mX)
≠ 0, it implies that the assay has shifted and is producing biased results. If 
q > 1, the assay’s variability has increased and is greater than expected during 
stable operation. Out-of-control shifts are generally modeled as d(mX) = b0 +
b1mX. If b0 ≠ 0, b1 = 0, then a constant shift has occurred across all concentra-
tion levels. If b0 = 0, b1 ≠ 0, then the out-of-control shift is proportional to the 
true concentration of the sample.

The quality of a laboratory measurement is related to the magnitude of the 
error in the result. The larger the difference between the measured value and 
the true concentration of the sample, the poorer the quality of the result. There 
are a number of possible ways to quantify the quality of the results produced 
by an assay. The most common way in laboratory medicine has been based on 
the concept of total allowable error. Let Ei = Xi − mX represent the error in a 
measured result. Let Ea(mX) represent the total allowable error specifi cation for 
the assay. If the error in a reported result exceeds Ea(mX), the result is considered 
to be of unacceptable quality; the error is large enough to potentially cause 
harm to the patient. The increase in the probability of producing unacceptable 
results due to an undetected out-of-control error state can be computed as 
PE = P(|Ei| > Ea | d, q) − P(|Ei| > Ea | d = 0, q = 1) for any given out-of-control 
state. Figure 1 and Figure 2 graphically depict the concepts. Using this model, 
a laboratory’s quality goals and QC performance are defi ned in terms of the 
total allowable error specifi ed for each analyte, the ability of the laboratory’s 
QC procedures to detect out-of-control error states when they occur, and the 
probability of producing and reporting unacceptable patient results when the 
QC procedures are implemented.

3.2. Quality Control Performance Measures

3.2.1. Batch Mode Testing

The most common form of laboratory quality control is based on the testing 
of quality control samples. A control sample is a stable substance with a known 
concentration. For out-of-control states that affect the analytical testing process, 
it is assumed that the control samples will refl ect the error state in the same 
way that patient samples do. Because the concentrations of the control samples 
are known, statistical methods can be used to assess the true state of an assay 
based on the measured values obtained from the control samples (5).
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Fig. 1. The probability of producing an unacceptable test result during an out-of-
control error condition. The dashed curve represents the in-control frequency distribu-
tion of analytical measurement error. The solid curve shows an out-of-control condition 
that has caused a shift equal to d0 in the frequency distribution. Ea is the allowable error 
specifi cation for the assay. The shaded area represents the probability of producing an 
unacceptable result for the out-of-control error state.

There are two basic modes of laboratory testing: batch mode and continuous 
mode. In the batch testing mode, a group of patient samples, along with some 
number of control samples, are processed and measured as a batch. It is assumed 
that all samples in the batch are in the same control state. The control sample 
results are used to decide whether the batch is in-control (and can be accepted) 
or is out-of-control (and should be rejected). In the continuous testing mode, 
there is no physically defi ned batch. Rather, patient samples are tested in a 
continuous stream. An out-of-control error condition may occur at any point in 
the testing stream. Periodically, one or more control samples are inserted into 
the testing stream. The control sample results are used to decide whether the 
testing process is in-control (and can continue operating) or is out-of-control 
(and should be stopped).

For batch mode laboratory testing, the probability of batch rejection, PR, is 
a natural outcome measure that can be used to evaluate the performance of a 
QC procedure. The probability of rejecting a batch that is in-control is the false-
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rejection probability. A good QC procedure should have a low false-rejection 
probability. The probability of rejecting a batch that is out-of-control is the error 
detection probability. The probability of error detection will depend on the 
magnitude of the out-of-control error condition. Plotting the probability of error 
detection versus the magnitude of the out-of-control error condition is referred 
to as a power function graph. For many batch mode QC procedures, the prob-
abilities of false rejection and error detection can be mathematically derived. 
In other cases, computer simulations are used (6). Figure 3 shows an example 
of a power function graph that was derived mathematically.

The probability of reporting unacceptable patient results, PU, due to an out-
of-control batch will depend both on the magnitude of the out-of-control error 
condition, the probability of generating unacceptable patient results in the pres-
ence of the error condition, and the probability that the QC procedure fails to 
detect the error condition (7). This is illustrated in Figure 4. The behavior of 
the curve representing the increase in probability of reporting unacceptable 
results due to an undetected out-of-control batch can be explained as follows. 
For very small out-of-control error conditions, the probability of the QC pro-
cedure rejecting the batch is low, but the probability of generating unacceptable 

Fig. 2. The increase in probability, PE, that the total error in a measured result will 
exceed the allowable error specifi cation, Ea, as a function of the magnitude d, of an 
out-of-control shift in the analytical testing process. The value d0 is the out-of-control 
shift illustrated in Figure 1.
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results in the presence of the error condition is also low. For very large out-of-
control error conditions, the probability of generating unacceptable results is 
high, but the probability of rejecting the batch is also high. The worst case, in 
the sense of being associated with the largest increase in the probability of 
reporting unacceptable results due to an undetected out-of-control error condi-
tion, will be somewhere in between the 2 extremes. The worst-case out-of-
control error condition and its associated increase in probability of reporting 
unacceptable results will depend on the total allowable error specifi cation, the 
analytical imprecision of the assay, the number of control observations included 
in the batch, and the QC rule applied to the control observations.

Different batch-testing QC procedures can be compared by evaluating their 
power functions and their probabilities of reporting unacceptable results. The 
2 main features of a batch QC procedure that can be modifi ed are the number 
of control samples in the batch and the test statistics computed from the control 
sample results. The greater the number of control samples in the batch, the 
better the QC performance will be. In general, the most powerful test statistics 
for batch QC procedures are based on the sample mean and variance of the 
control results in the batch (8,9).

Fig. 3. The probability of a quality control rejection, PR, based on the magnitude of 
the out-of-control error condition. For the QC procedure evaluated here, the QC rule 
rejects if any control sample’s measured result is more than 3 analytical standard devia-
tions from the control sample target value. The 3 curves, in increasing order, are the 
power functions when 1, 2, and 3 control samples are evaluated per batch.
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Fig. 4. (A) The probability of producing an unacceptable result (increasing curve) 
and the probability the QC procedure fails to reject the batch (decreasing curve) as a 
function of the magnitude of out-of-control error condition. The probability of produc-
ing an unacceptable result curve is based on a total allowable error specifi cation equal 
to 4s. The probability of accepting the batch is based on a QC procedure with 3 standard 
deviation limits and 2 control samples per batch (see Fig. 3). (B) The probability of 
reporting unacceptable patient results, PU, due to an undetected out-of-control error 
condition.
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The mean rule is designed to detect shifts in the testing process, and the 
variance rule is designed to detect increases in analytical imprecision. If there 
are n control samples tested in a batch, then defi ne
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where xi, is the ith control sample measurement, mi is the true concentration level 
of the ith control sample, and s i is the stable analytical imprecision at 
the ith control sample concentration. A QC rule based on the sample mean 
rejects the batch if n y z> −1 21α / , and a QC rule based on the sample variance 
rejects the batch if (n − 1)s2

Y > c2
1−a2

(n − 1). The symbol z1−a1/2 denotes the 100(1 
− a1/2) percentile of the standard normal distribution, and a1 determines the 
false-rejection rate for the mean rule. Likewise, c2

1−a2(n − 1) denotes the 100(1 −
a2) percentile of the chi-square distribution with (n − 1) degrees of freedom, and 
a2 determines the false-rejection rate for the sample variance rule. These two QC 
tests are statistically independent of one another, so the overall false rejection 
probability if both rules are applied is computed as 1 − (1 − a1)(1 − a2).

3.2.2. Continuous Mode Testing

For laboratory testing processes that operate in continuous mode, the proba-
bility of accepting or rejecting a “batch” is a diffi cult performance measure to 
interpret because well-defi ned batches don’t exist. In this situation, a more 
meaningful and interpretable outcome measure is the expected number of 
patient samples that are produced between the point at which an out-of-control 
error condition occurs and the point at which the QC procedure detects the 
out-of-control error condition (10). Let a QC event be defi ned as the point where 
control samples are tested and a QC acceptance/rejection decision is made. The 
number of patient samples that are produced during an undetected out-of-
control error condition will depend on where the out-of-control condition begins 
relative to the next scheduled QC event, the power of the QC procedure to 
detect the out-of-control condition when a QC event occurs, and how frequently 
QC events are scheduled.

A QC strategy based on periodic QC events can only detect an out-of-control 
error condition at the points where QC events occur. Rather than computing 
the probability of rejection at a QC event, more typically the expected number 
of QC events until rejection is computed. This is commonly referred to as the 
average run length (ARL) to rejection. When the process is in-control, ARL 
should be large. When an out-of-control condition exists, ARL should be small. 
ARL will attain its minimum value of 1 when the probability of rejection at the 
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fi rst QC event after the error occurs is 1. There is a simple inverse relationship 
between ARL and the probability of rejection for QC procedures that only use 
control sample results from the current QC event: ARL = 1/PR. For QC proce-
dures that combine control sample results from previous QC events with the 
control sample results from the current QC event, this simple inverse relation-
ship no longer holds. In these cases, though ARL is still a meaningful and 
interpretable measure, the probability of rejecting a QC event is more diffi cult 
to interpret because it is not constant from one QC event to the next. Rather, it 
varies depending on how long an out-of-control error condition has existed 
without detection by previous QC events (11).

The expected number of patient samples produced during an out-of-control 
error condition can be computed as E(NP) = E(N0) + E(NQ)(ARL − 1), where 
E(N0) is the expected number of patient samples from the onset of the out-of-
control error condition until the next scheduled QC event, and E(NQ) is the 
expected number of patient samples tested between scheduled QC events. The 
expected number of unacceptable patient results, E(NU), due to an out-of-
control error condition will be the product of the expected number of patient 
samples produced during the error condition and the probability of generating 
unacceptable patient results given the magnitude of the out-of-control error 
condition. Figure 5 demonstrates these performance measures.

The behavior of the curve representing the increase in expected number of 
unacceptable patient results due to an undetected out-of-control condition can 
be explained as follows. For very small out-of-control error conditions, the 
ARL for the QC procedure is large, but the probability of producing unaccept-
able results in the presence of the error condition is low. For very large out-of-
control error conditions, all of the patient results, from the time the error 
condition occurs until the next scheduled QC event, are unacceptable, and the 
probability is near 1 that the QC event will detect the error condition. If out-
of-control error conditions can occur with equal probability anywhere within 
the laboratory testing stream then, on average, the number of patient samples 
processed between the occurrence of the error condition and the next scheduled 
QC event will be one-half the expected number of patient samples tested 
between QC events: E(N0) = E(NQ)/2. Therefore, the expected number of unac-
ceptable patient results due to an undetected out-of-control error condition will 
depend on the analytical imprecision of the assay, the total allowable error 
specifi cation, the frequency of QC events, the number of control observations 
assayed during each QC event, and the QC rules that are applied. Clearly, for 
continuous-mode laboratory operations, in addition to the power of a QC pro-
cedure, the frequency of QC events is an important consideration when evaluat-
ing alternative QC strategies.
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Fig. 5. (A) The expected number of patient results produced before detection of an 
out-of-control error condition, E(NP), as a function of the magnitude of the out-of-
control error condition. For this case, the expected number of patient samples between 
scheduled QC events is E(NQ) = 50. The QC rule applied at each QC event uses 3 
standard deviation limits and 2 control samples (see Fig. 3). (B) The expected number 
of unacceptable patients results, E(NU), due to an undetected out-of-control error condi-
tion. The probability of producing an unacceptable result is based on a total allowable 
error specifi cation equal to 4s (see Fig. 4A).
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4. Establishing Reference Ranges
4.1. Reference Limit Estimation

A reference range (or reference interval) is the interval between, and 
including, 2 reference limits. In most situations, reference limits are defi ned 
as the 2.5th and 97.5th percentiles of the distribution of test results from indi-
viduals representing the reference population. Reference ranges are generally 
derived for “healthy” populations, but may be determined for any well-defi ned 
clinical state. A laboratory test result is usually compared with a reference 
interval to assist in making a diagnosis or other medical management 
decision.

There are many different methods that have been described in the literature 
for estimating percentiles of a distribution. They can be divided into two 
basic categories: parametric and nonparametric methods. Parametric methods 
assume that after suitable transformation, the reference population can 
be represented by a normal (Gaussian) distribution. Nonparametric methods 
don’t make any assumptions about the distributional form of the reference 
population. Although there are still disagreements about which approach is 
preferable, most often the nonparametric approach is recommended for routine 
use (12).

Nonparametric methods for estimating a percentile from a reference distribu-
tion are based on the theory of order statistics (13). Assume measurements from 
n subjects representing the reference population have been obtained. The mea-
sured values, sorted in order from smallest to largest, are called order statistics 
and are denoted by x(1), x(2),  .  .  .  , x(n). Let xp denote the pth population quantile. 
We are generally interested in estimating x0.025 and x0.975. A number of estimates 
of xp based on different functions of the order statistics have been proposed. 
Parrish (14) compares 10 different nonparametric quantile estimators, all based 
on order statistics.

The simplest and most popular nonparametric method estimates xp as the 
observation with rank r = p(n + 1). If p and n are such that r is an integer, then 
the estimate is simply x̂p = x(r). If r is not an integer, then a number of different 
possibilities exist. The most common approach is to linearly interpolate between 
the 2 order statistics with integer ranks on either side of the value of p(n + 1); 
x̂p = (1 − h)x(k) + hx(k+1), where k is the largest integer value less than p(n + 1) 
and h = p(n + 1) − k is the fractional part of p(n + 1). As an example, if mea-
surements from 100 subjects have been obtained, then the estimates for the 
2.5th and 97.5th percentiles would be

0 025 101 2 525 2 0 525 0 475 0 5250 025 2 3. . . . ..( )( ) = ⇒ = = ⇒ = +( ) ( )k h x x, ξ̂
00 975 101 98 475 98 0 475 0 525 0 4750 975 98. . . . ..( )( ) = ⇒ = = ⇒ = +( )k h x, ξ̂ xx 99( ) .
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The above estimator can be thought of as a weighted average of 2 order sta-
tistics. An alternative weighted average estimator that incorporates all n order 
statistics has been proposed by Harrell and Davis (15). It can be expressed as

ξ̂p i i
i

n

w x= ( )
=
∑ ,

1

where the weights, wi, are computed as the difference between two incomplete 
beta functions:

wi = Ii/n(p(n + 1), (1 − p)(n + 1)) − I(i−1)/n(p(n + 1), (1 − p)(n + 1)).

The heaviest weights are applied to order statistics with ranks near the value of
p(n + 1), with the magnitude of the weights dropping off for order statistics 
with ranks more distant from p(n + 1). For the above example, Table 2 gives 
the weights for order statistics with weights that are at least 0.0001. Most 
modern statistical programming packages will provide the capability to compute 
the incomplete beta function. The values in Table 2 were obtained using Stata’s 
betainc function. Parrish found the Harrell-Davis estimator to be the most 
precise among the estimators he evaluated (14).

Table 2
Harrell-Davis Order Statistic Weights, w, to 
Estimate the 2.5th and 97.5th Percentiles Based on 
a Sample Size, n = 100

Quantile

 0.025 0.975

Rank w Rank w

 1 0.1457  88 0.0001
 2 0.2994  89 0.0002
 3 0.2474  90 0.0005
 4 0.1532  91 0.0014
 5 0.0820  92 0.0034
 6 0.0401  93 0.0081
 7 0.0184  94 0.0184
 8 0.0081  95 0.0401
 9 0.0034  96 0.0820
10 0.0014  97 0.1532
11 0.0005  98 0.2474
12 0.0002  99 0.2994
13 0.0001 100 0.1457
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4.2. Confi dence Intervals for a Reference Limit

The reference limits computed from a sample of subjects randomly selected 
from the reference population are estimates of the true population percentiles. 
Another random sample selected from the reference population would produce 
similar, but not identical, estimates. A useful way of characterizing the vari-
ability in the estimates is to compute a confi dence interval for the population 
percentile being estimated. Confi dence intervals for reference limits can be 
defi ned in at least 3 ways. The most common approach is to estimate a lower 
and upper bound for the true percentile, xp. Alternatively, one can estimate a 
lower and upper bound for the percentage, p, of the distribution excluded by 
the estimated percentile, x̂p. Finally, one can estimate a lower and upper bound 
for the true fraction of the reference distribution contained between the upper 
and lower reference limits. Only the fi rst type of confi dence interval will be 
described here.

Like x̂p, nonparametric confi dence interval estimates for xp can be obtained 
from the sample order statistics. That is, a 100(1 − a) percent confi dence inter-
val for xp can be obtained as (x(r), x(s)), where the rank values r and s are deter-
mined such that P(x(r) ≤ xp ≤ x(s)) ≥ 1 − a. It is known (13) that

P x x
n

i
p p r sr p s

i r

s
i n i

( ) ( )
=

−
−≤ ≤( ) = ⎛

⎝⎜
⎞
⎠⎟ −( ) = <∑ξ γ

1

1 , .

The summation in the above equation can be computed from either the 
binomial distribution function or the incomplete beta function. For instance, in 
Stata, the functions Binomial(n, k, p) and ibeta(k, n − k + 1, p) both compute

n

i
p p

i k

n
i n i⎛

⎝⎜
⎞
⎠⎟ −( )

=

−∑ 1 . Therefore, given values of r, s, n, and p, the above 

summation could be computed in Stata as Binomial(n, r, p) − Binomial(n, s, p)
or as ibeta(r, n − r + 1, p) − ibeta(s, n − s + l, p).

Any choice of r and s that makes g ≥ 1 − a will produce a confi dence interval 
with confi dence coeffi cient ≥1 − a. In general, there will be multiple combina-
tions of r and s that make g ≥ 1 − a and no choice that will make g exactly 
equal to 1 − a. Table 3 gives an example of 3 different (r, s) pairs that produce 
90% confi dence intervals for the 2.5th percentile when n = 180. The fi rst 
case (r = 1, s = 9) meets the added restriction that both P(x0.025 < x(r)) and 
P(x0.025 ≥ x(s)) be less than or equal to a/2 = 0.05. The second (r = 1, s = 8) and 
third (r = 2, s = 9) cases provide narrower intervals that still meet the required 
coverage probability, but each has one-tail probability exceeding 0.05.

Tables listing the rank numbers r and s that provide a 90% confi dence inter-
val for the 2.5th percentile for different sample sizes, n, have appeared in a 
number of laboratory medicine publications (12,16). The tables may also be 
used to obtain 90% confi dence intervals for the 97.5th percentile by subtracting 
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the tabled values for r and s from n + 1. Apparently, the rank values given in 
these tables have been derived with the restriction that neither tail probability 
exceeds 5% (as demonstrated in the fi rst case in Table 3). Thus, in a number 
of cases the actual coverage probability is considerably greater than 90%.

Beran and Hall (17) proposed an interpolation scheme to obtain confi dence 
interval estimates that more closely achieve the desired 1 − a coverage proba-
bility. To estimate an equal-tailed two-sided 1 − a confi dence interval, the lower 
limit is computed by determining r such that

n
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p p
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The interpolated lower limit is computed as (1 − p)x(r) + px(r+1). Likewise, for 
the interpolated upper limit, determine s such that
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Table 3
Distribution-Free Confi dence Intervals for the 2.5th Percentile Based on a 
Sample Size of 180

Condition P Alternative 90% confi dence interval limits

x0.025 < x(1) 0.0105 0.0105 0.0105 0.0589
x(1) ≤ x0.025 < x(2) 0.0484
x(2) ≤ x0.025 < x(3) 0.1111
x(3) ≤ x0.025 < x(4) 0.1691
x(4) ≤ x0.025 < x(5) 0.1918 0.9513 0.9055
x(5) ≤ x0.025 < x(6) 0.1731   0.9029
x(6) ≤ x0.025 < x(7) 0.1295
x(7) ≤ x0.025 < x(8) 0.0825
x(8) ≤ x0.025 < x(9) 0.0458
x(9) ≤ x0.025 < x(10) 0.0224 

0.0382
0.0840

0.0382x0.025 ≥ x(10) 0.0158
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with

π α γ
γ γ

=
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−
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and compute the interpolated upper limit as (1 − p)x(s) + px(s+1).
The computations for a 90% confi dence interval for the 2.5th percentile when 

n = 180 are
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4.3. Sample Size Considerations

At least 39 samples are required in order to estimate the 2.5th and 97.5th 
percentiles using the p(n + 1) order statistic. In this case, the reference limits 
are estimated by the minimum and maximum values in the sample, (x(1), x(39)).
The Harrell-Davis estimator, being a weighted average of all the order statistics, 
can be estimated with smaller sample sizes.

Larger sample sizes are required to obtain nonparametric confi dence inter-
vals for the 2.5th and 97.5th percentiles. For sample sizes less than 91, 90% 
rank-based confi dence intervals aren’t possible. For sample sizes less than 119, 
90% confi dence intervals with ≤5% in each tail cannot be obtained. Table 4
gives minimum sample sizes required for nonparametric rank-based confi dence 
intervals with different coverage probabilities.

Table 4
Minimum Sample Sizes, n, Necessary to Obtain Rank-Based Confi dence 
Intervals for the 25 Percentile with a Specifi ed Coverage Probability

 Probability

Confi dence interval n (r, s) Below x(r) Within limits Above x(s)

90% 91 (1, 10) 0.0999 0.9000 0.0001
≤5% in each tail 119 (1, 7) 0.0492 0.9204 0.0304
95% 119 (1, 11) 0.0492 0.9506 0.0002
≤2.5% in each tail 146 (1, 9) 0.0248 0.9636 0.0116
99% 182 (1, 16) 0.0100 0.9900 0.0000
≤0.5% in each tail 210 (1, 13) 0.0049 0.9924 0.0026
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The precision of a reference interval estimate will depend on the number of 
subjects randomly sampled from the reference population. Various recommen-
dations have been made regarding the preferred sample size to estimate refer-
ence limits (18). One common recommendation is that at least 120 samples be 
used. This recommendation originated in one of the early laboratory medicine 
publications describing nonparametric confi dence intervals for a reference limit 
(19). It was based on the minimum number of samples necessary to obtain 90% 
confi dence intervals for the 2.5th and 97.5th reference limits that ensured ≤5%
in each tail (row 2 in Table 4).

Some argue that it is unwise to have one of the confi dence interval limits be 
represented by the minimum or maximum sample values, because if any outli-
ers are present in the sample, then the confi dence interval estimate will be 
adversely affected (20). A sample size of 188 is the smallest n that meets this 
criterion when computing 90% confi dence intervals for the 2.5th and 97.5th 
percentiles that exclude ≤5% in each tail. With a sample size of 188, the confi -
dence intervals for the 2.5th and 97.5th percentiles are (x(2), x(9)) and (x(180), x(187)),
respectively. Others have recommended that sample sizes for establishing refer-
ence limits be as large as 700 or more, especially for highly skewed distribu-
tions (21).

It is diffi cult to predict in advance the width of a confi dence interval such as 
(x(2), x(9)). Its width will depend on the particular values obtained for the second 
and ninth smallest reference sample values, which in turn will depend on the 
tail characteristics of the reference population. An alternative consideration 
would be to take into account the precision of the population percentage 
excluded by a reference limit. For example, in a sample of 119 subjects the 
nonparametric rank-based estimate of the 2.5th percentile is x(3). The 90% con-
fi dence interval for the true percentage below x(3) when n = 119 is (0.7%, 5.2%). 
If n is increased to 199, the nonparametric estimate of the 2.5th percentile is 
x(5), and the 90% confi dence interval for the true percentage below x(5) narrows 
to (1.0%, 4.5%). These confi dence intervals have the advantage that they do 
not depend on the distribution of the reference population. Thus, with n in the 
neighborhood of 200 samples, the nonparametric rank-based 90% confi dence 
intervals for the 2.5th and 97.5th reference limits do not include the extreme 
sample values, and the 90% confi dence intervals for the true percentages 
excluded by the estimated reference limits will be around (1%, 4.5%) and 
(95.5%, 99%), respectively.

5. Conclusion
Laboratory medicine has steadily been evolving into an “information” 

science. As this trend continues, the role of statistics and statistical thinking 
becomes more signifi cant and essential. This chapter has addressed only 3 of 
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the many statistical issues that arise in the clinical laboratory. These topics were 
selected because they address important laboratory questions and because they 
each demonstrate a valuable statistical principle. The estimation of an assay’s 
analytical imprecision demonstrates the impact of study design on the appropri-
ate estimation and interpretation of an assay’s total analytical imprecision. The 
design of an effective quality control strategy for an assay demonstrates the key 
role that statistical modeling plays in determining how to ask and answer the 
most relevant questions. The establishment of population reference ranges 
demonstrates that many different factors can come into play when trying to 
develop a sound estimator. The contributions of statistical principles such as 
these will continue to play an increasingly important role in the evolution of 
the modern laboratory.
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Power and Sample Size

L. Douglas Case and Walter T. Ambrosius

Summary
In this chapter, we discuss the concept of statistical power and show how the sample size can 

be chosen to ensure a desired power. Power is the probability of rejecting the null hypothesis 
when the null hypothesis is false, that is the probability of saying there is a difference when a 
difference actually exists. An underpowered study does not have a suffi ciently large sample size 
to answer the research question of interest. An overpowered study has too large a sample size 
and wastes resources. We will show how the power and required sample size can be calculated 
for several common types of studies, mention software that can be used for the necessary 
calculations, and discuss additional considerations.

Key Words: Clinically meaningful effect; hypothesis test; power; sample size; type I error; 
type II error.

1. Introduction
Consideration of power and sample size is crucial in the design of most 

research studies and should be addressed early in the planning stage. During this 
stage, the investigator can estimate the number of participants needed to test a 
specifi c hypothesis, the power available to detect a specifi c alternative given a 
fi xed sample size, or the difference that can be detected with a specifi ed power 
with a given sample size. Power is the probability of rejecting the null hypothesis 
when the null hypothesis is false; that is, the probability of saying there is a 
difference when a difference actually exists. Having an adequately powered 
study is important, of course, because the goal of most investigations is to show 
a treatment effect. It is a waste of time, money, and participant resources for an 
investigator to conduct a study that is unlikely to show what he wants to show, 
even when he is correct in his beliefs. On the other hand, an overpowered study, 
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one that uses many more subjects than is necessary to adequately answer the 
question, also wastes time, money, and participant resources. Early consider-
ation of power and sample size can answer the question of whether the study is 
feasible given the resources available and the expected treatment effect. Address-
ing these issues early helps the investigators focus on crucial design elements, 
leading to a tighter and more rigorous study.

In this chapter, we consider the concept of power in some detail and show 
how it can be calculated in several common situations. We then show how to 
calculate a sample size to ensure an appropriate power to test a particular 
hypothesis. Research studies come in a wide assortment of designs (e.g., cross-
sectional, pre-post, longitudinal, cross-over, etc.), involving one or more groups, 
with outcomes that may be continuous, dichotomous, censored, or correlated 
(or some combination of these), and sample size formulae can be derived for 
each of these. Indeed, entire books have been written detailing sample size 
calculations for a multitude of designs and outcomes [see, for example, Cohen 
(1), Kraemer and Thiemann (2), Murphy and Myors (3), and Chow and others 
(4)]. However, we are most interested in the ideas involved, and we will focus 
mainly on single-arm and 2-arm studies involving continuous outcome mea-
sures. Programs are mentioned that will allow the reader to calculate a power 
or sample size for studies using other designs or testing other outcomes. Other 
considerations in power and sample size determination are then discussed.

2. Power of a Test
Hypothesis testing was discussed in detail in Chapter 4. In brief, a hypoth-

esis is a statement made about a population (or alternatively, a statement made 
about the distribution of a random variable). This statement may or may not be 
true, and, in reality, we will never know which. However, based on sample data 
and some decision rule, we either reject or fail to reject the hypothesis. This 
process is called hypothesis testing.

Consider a simple example. Suppose a physician knows that historically 
weight in 15-year-old boys has been normally distributed with a mean ± SD of 
120 ± 20 lb. She believes, however, that the weight of these young boys today 
has increased (perhaps owing to current diets and the overuse of video games), 
and she wants to show that the mean weight is now greater than 120 lb. Measur-
ing weight on every 15-year-old boy is physically impossible, so the physician 
will not be able to determine with certainty whether the true mean weight is 
now less than or greater than 120. However, she wants to reach a decision based 
on weight measurements made on a sample of boys. In terms of hypothesis 
testing, she wants to decide between 2 competing hypotheses, one that the true 
mean is less than or equal to 120 and another that it is greater than 120. That 
is, based on sample data, she wants to decide between

H0 : mwgt ≤ 120 versus H1 : mwgt > 120,
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where H0 is called the null hypothesis and H1 the alternative hypothesis (some-
times denoted by Ha). Typically, the current state of affairs is taken as the null 
hypothesis, and the statement that a researcher wants to demonstrate is called 
the alternative hypothesis, although this choice is sometimes a bit arbitrary. The 
hypotheses above are called 1-sided hypotheses because we are interested in 
alternatives in only 1 direction. Were the researcher interested in alternatives 
in either direction, she would use a 2-sided hypothesis test. For example, she 
may hypothesize that the mean weight is no longer 120 lb. That is

H0 : mwgt = 120 versus H1 : mwgt ≠ 120.

We will talk about 1- versus 2-sided hypothesis tests in more detail below.
The original hypotheses are also called composite hypotheses because the 

state of nature is incompletely specifi ed. For example, considering H1 : mwgt >
120, the true mean could be 121 or 125 or any other value greater than 120. 
For the 2-sided hypothesis test, the null hypothesis is called a simple hypothesis 
because it completely specifi es the state of nature (mwgt = 120).

The physician researcher now has to develop a decision rule to help her choose 
between the 2 competing hypotheses based on the data she will collect. Suppose 
she decides to accept H1 if the sample mean is greater than 120, a choice that 
might seem natural at fi rst because that is the value that separates the null and 
alternative hypotheses. Values of the test statistic (mean weight in our case) that 
lead to rejection of the null hypothesis (sample mean weights >120) are called 
the rejection region or the critical region, whereas values of the test statistic that 
lead to acceptance of the null hypothesis (sample mean weights ≤120) are called 
the acceptance region. The value of the test statistic that separates the acceptance 
and rejection regions is called the critical value, which we will denote by C.

In deciding between H0 and H1, the researcher can decide correctly or incor-
rectly. The 2 types of incorrect decisions would be to choose H1 when H0 is 
actually true or to choose H0 when H1 is actually true. The fi rst type of incorrect 
decision is called a type I error, and the probability of a type I error, P(reject 
H0|H0 true), is denoted by a. The probability of a type I error is sometimes 
referred to as the level of signifi cance, the size of the test, or the size of the 
critical region. The second type of error is called a type II error, and the prob-
ability of a type II error, P(accept H0|H0 false), is denoted by b. These probabili-
ties are summarized in Table 1 and are illustrated in Figure 1.

The complement of the type II error (1 − b) is called the power of a test and 
is the probability of rejecting H0 when H0 is false; that is, P(reject H0|H0 false). 
It is important to note that the probability of a type I or II error depends on the 
true state of nature (in our example the true weight), which we never know, as 
well as the decision rule. That is, there is not just one a or one b but rather an 
a for every point in the acceptance region and a b for every point in the rejec-
tion region.
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The researcher should naturally be concerned about the probability of making 
a type I or II error. Because weight is normally distributed with a standard 
deviation of 20, we know that the mean weight is also normally distributed with 
a standard deviation of 20 / n , where n is the number of boys sampled by the 
physician. Thus, we can calculate the probability of rejecting the null hypoth-
esis for any value of the true mean weight. This probability is given by

P( | )
/

Xwgt wgt
wgt wgt> = −

−⎛
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⎞
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Table 1
Possible Decisions in Hypothesis Testing

Decision

H0 H1

Truth H0 Correct decision Incorrect decision
    (type I error)

H1 Incorrect decision Correct decision
   (type II error)

Distribution of test statistic
under the alternative hypothesis

Distribution of test statistic
under the null hypothesis

C

β

α

Fig. 1. Illustration of type I (α) and II (β) errors.
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where Φ is the cumulative standard normal distribution function. If the true 
mean is 120, the probability is 50% that the null hypothesis would be rejected 
in favor of the alternative hypothesis. This would be a type I error. It is unlikely 
that a probability of 50% would be acceptable for such an error. Note that the 
probability of rejecting H0 when the true mean is 115 is 0.106. This again is a 
type I error. As mentioned above, there are multiple probabilities of type I error 
(an infi nite number for a composite null hypothesis), corresponding with all the 
points in the acceptance region. By convention, the probability of a type I error 
is usually reported as the maximum type I error across all those possible in the 
acceptance region. So another defi nition for the type I error is the maximum 
power of the test under H0. Probabilities of rejecting H0 for other choices of the 
true mean weight are shown in Table 2. We see that the probability of rejecting 
H0 (power) is 0.894 when mwgt = 125 and is 0.994 when mwgt = 130.

Indeed, the researcher would not be satisfi ed with a 50% chance of making 
a type I error (or at least the scientifi c community would not be satisfi ed). Thus, 
she would need to defi ne a new decision rule (i.e., a new critical region, or 
equivalently, a new test). Suppose she decides to reject H0 if X

–
wgt is greater than 

126. With this new decision rule (new test), one sees that the probabilities of 
rejecting H0 for mwgt equal to 120, 125, and 130 are 0.067, 0.401, and 0.841. 
One notes that the probability of a type I error has been reduced from 0.5 to 
0.067, but the power has also been reduced. For example, at mwgt equal to 125 
the power is decreased from 0.894 to 0.401, and for mwgt equal to 130, the power 

Table 2
Probabilities of Rejecting H0 for Various Tests 
(Critical Values) and Various True Weights

Critical
True mean weight

value 115 120 125 130 135

120 0.106 0.500 0.894 0.994 0.999
121 0.067 0.401 0.841 0.988 0.999
122 0.040 0.309 0.773 0.977 0.999
123 0.023 0.227 0.691 0.960 0.999
124 0.012 0.159 0.599 0.933 0.997
125 0.006 0.106 0.500 0.894 0.994
126 0.003 0.067 0.401 0.841 0.988
127 0.001 0.040 0.309 0.773 0.977
128 0.000 0.023 0.227 0.691 0.960
129 0.000 0.012 0.159 0.599 0.933
130 0.000 0.006 0.106 0.500 0.894
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is decreased from 0.994 to 0.841. This will be true, in general. For a fi xed 
sample size, reducing the probability of a type I error will reduce the power of 
the test for any specifi c alternative. Probabilities of rejecting H0 for additional 
choices of the critical value are also shown in Table 2.

Suppose the investigator wants the probability of a type I error to be fi xed at 
5%. What should she choose as the critical value? We see from Table 2 that a 
5% type I error corresponds with a critical value between 126 and 127. Because, 
under H0, X

–
wgt is normally distributed with a mean of 120 and a standard devia-

tion of 20 25 4/ = , we know that the area to the right of 120 + 1.645 × 4 =
126.58 equals 0.05. Thus, our critical value for rejection would be

C z n= + = + × =−µ σα0 1 120 1 645 20 25 126 58. . ,

where z1−a is the 100(1 − a)th percentile of the standard normal distribution 
function. This is illustrated in Figure 2. Thus the area to the right of 126.58 in 

105 110

–3 –2 –1 0 1 2 3

α

115 120 125 130 135

Weight (pounds)

Standardized Normal Deviate

C = 126.58
Z = 1.645

Fig. 2. Sampling distribution of mean weight with 0.05 1-sided critical region high-
lighted on the original scale and corresponding standardized normal deviate scale.
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Figure 2 (P(X
– > C)), which corresponds with the area to the right of 1.645 for 

a standardized normal deviate (P(Z > 1.645)), is 0.05.
So clearly, our test statistic could be, and is usually, written as the standard-

ized normal Z statistic; that is,

Z
X

n
=

− µ
σ

0

/
.

The advantage of using the Z statistic is that the percentiles of the standard-
ized normal distribution are well tabulated. For this test statistic, the critical 
value is 1.645 for a 1-sided type I error of 0.05.

Now we can calculate the area to the right of the critical value (126.58 in 
our example) for various choices of the mean under the alternative hypothesis. 
This gives us the power of the test at that particular choice of the mean. That 
is

Power ,= = −
−⎛

⎝⎜
⎞
⎠⎟

= − −
−⎛

⎝⎜
⎞
⎠⎟−P

C

n
z

n
( )µ µ

σ
µ µ
σ

α1 1 1
0Φ Φ

where Φ represents the cumulative standard normal distribution function. This 
is done in Figure 3 for several choices of m. As the reader can easily see, the 
power increases as mwgt gets further and further away from m0. That is, the power 
increases as the difference in the hypothesized means increases. For example, 
if the true mean is 124 lb, the power is 0.26, if mwgt = 128, the power is 0.64, 
and if mwgt = 132, the power is 0.91. The probability of rejecting H0 can be 
plotted as power versus the true mean in what is called a power curve. The 
power curve for this example is illustrated in Figure 4. One can then easily 
approximate the power for any particular value of mwgt by drawing a vertical 
line up from the mwgt axis until it intersects the power curve; then draw a hori-
zontal line from the point of intersection to the power axis, where the approxi-
mate power can be read. For example, the reader can see that when the true 
mean is 130, the probability of rejecting the null hypothesis at the 5% 1-sided 
level of signifi cance is approximately 80%. That is, if the true mean in this 
population is 130, and we repeatedly took samples of size 25 and tested the 
hypothesis above at the 5% 1-sided level of signifi cance, we would reject the 
null hypothesis 80% of the time. We would fail to reject the null hypothesis 
20% of the time even though the true mean was 130.

The probability of rejecting H0 when the true mean is 125 lb is approximately 
35%. If, for example, it had been important to reject H0 when the true mean 
was 125, perhaps the study should not have been done (at least with this 
sample size). For this study, with this sample size, we really only have reason-
able power (0.8 or higher) for rejecting H0 when the true mean is 130 and 
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µ = 120

P(µ) =0.05

µ =124

P(µ) =0.26

µ = 126.58

P(µ) =0.50

µ =128

P(µ) =0.64

µ =132

P(µ) =0.91

Weight (lbs)

Fig. 3. Probability of rejecting H0 for various choices of the true mean weight.

greater. If you are stuck with a sample size (perhaps because you are doing a 
retrospective study and that is the number of patients with a particular condition 
that have been seen in your clinic or because of cost constraints), you should 
generate a power curve to explore the characteristics of your study.
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2.1. Two-Sided Hypothesis Tests

Consider again the following null and alternative hypotheses.

H0 : mwgt = 120 versus H1 : mwgt ≠ 120.

Sample means substantially less than or substantially greater than 120 support 
the alternative hypothesis, so the researcher would choose small or large sample 
means (or, correspondingly, small or large values of Z) as her critical region. 
If she wants to maintain an a size for this 2-sided hypothesis test, she could 
divide a equally into the lower and upper areas of the distribution of the test 
statistic under the null hypothesis. If the mean is to be used as the test statistic, 
then the lower and upper critical values would be given by

C z nL = − −µ σα0 1 2/ /

and

C z nU = + −µ σα0 1 2/ / ,
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Fig. 4. Probability of rejecting H0 as a function of the true mean weight for 1-sided 
test.
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respectively, which equal 112.16 and 127.84 for our example. Of course, the 
corresponding values for the Z statistic are −1.96 and 1.96, respectively, because 
1.96 is the normal deviate corresponding with an area of 0.025. These choices 
are illustrated in Figure 5.

The power of the test against a specifi c alternative is the area to the left of 
CL plus the area to the right of CU for a specifi c value of mwgt (note again that 
this is a when mwgt = m0). This is given by:

Power = = − −⎛
⎝⎜

⎞
⎠⎟

+ −⎛
⎝⎜

⎞
⎠⎟

= − − −⎛
−

P
C

n

C

n

z
n

U L( )

/

µ µ
σ

µ
σ

µ µ
σ

α

1

1 1 2
0

Φ Φ

Φ
⎝⎝⎜

⎞
⎠⎟

+ − −⎛
⎝⎜

⎞
⎠⎟

Φ z
n

α
µ µ
σ

/ .2
0

105 110 115 120 125 130 135

Weight (pounds)

–3 –2 –1 0 1 2 3

Standardized Normal Deviate

C = 112.16
Z = –1.96

C = 127.84
Z = 1.96

α/2 α/2

Fig. 5. Sampling distribution of the mean weight with 0.05 1-sided critical region 
highlighted on the original scale and corresponding standardized normal deviate 
scale.
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When the true mean is much less than m0 the area corresponding with the

upper critical region, 1 1 2
0− − −⎛

⎝⎜
⎞
⎠⎟−Φ z

n
α

µ µ
σ

/ , will be negligible, and when the

true mean is much greater than m0, the area corresponding with the lower

critical region, Φ z
n

α
µ µ
σ

/ 2
0− −⎛

⎝⎜
⎞
⎠⎟
, will be negligible. This is illustrated in

Table 3 for various choices of mwgt. The power for the 1-sided 5% test is also 
provided for reference.

The power curve for this 2-sided hypothesis test (again assuming an n of 25 
with s = 20) is shown in Figure 6. The 1-sided power curve shown in Figure
4 is repeated here (shown as the dotted line) for reference. Both tests have a 
size of 5%. As easily seen, the 1-sided test has greater power against alternative 
means greater than 120 lb. However, the 1-sided test does not allow rejection 
for alternatives less than 120.

2.2. Simple versus Composite Hypotheses

As mentioned earlier, hypotheses can either be simple (i.e., the hypothesis 
completely specifi es the distribution) or composite (i.e., the hypothesis does not 
completely specify the distribution). In the initial example above, both the null 
and alternative hypotheses were composite. In most applications, one or both 
of the competing hypotheses will be composite. However, the concepts dis-
cussed above apply as well when the hypotheses are not composite. Consider 
the following examples.

Table 3
Areas of Lower and Upper Rejection Regions as a Function of the True Mean 
Weight with Power for 2-Sided (Sum of Lower and Upper Areas) and 
Corresponding 1-Sided Tests

Power Power
µwgt

Φ z
n

α
µ µ
σ

/ 2
0− −⎛

⎝⎜
⎞
⎠⎟

1 1 2
0− − −⎛

⎝⎜
⎞
⎠⎟−Φ z

n
α

µ µ
σ

/
(2-sided) (1-sided)

105 0.9633 0.0000 0.9633 0.0000
110 0.7054 0.0000 0.7054 0.0000
115 0.2389 0.0007 0.2395 0.0019
120 0.0250 0.0250 0.0500 0.0500
125 0.0007 0.2389 0.2395 0.3465
130 0.0000 0.7054 0.7054 0.8038
135 0.0000 0.9633 0.9633 0.9824
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Example 1

Consider a cancer researcher who is interested in the tumor response rate to 
a new agent. He wants to test the null hypothesis that the response rate is 0.4 
against the alternative hypothesis that the response rate is 0.6. That is,

H0 : q = 0.4 versus H1 : q = 0.6.

He treats 20 patients with the new agent. Let X denote the number of 
responses observed among the 20 patients. Then X has a binomial distribution 
with n = 20 and p = 0.4 under H0 and p = 0.6 under H1. The researcher decides 
to reject H0 if X ≥ C, where C = 11. What are a and b for this test?

For these simple hypotheses, the power function is only defi ned for 0.4 and 
0.6. The power of the test for q = 0.4 is defi ned as a, the type I error. Cumula-
tive binomial probabilities are shown in Table 4. We see that the probability 
of rejecting H0 when p = 0.4, a, is 1 − 0.87248 = 0.12752, whereas the probabil-
ity of rejecting H0 when p = 0.6, 1 − b, is 1 − 0.24466 = 0.75534. Values of a
and 1 − b corresponding with several realizations of X are shown in Table 5.
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Fig. 6. Probability of rejecting H0 as a function of the true mean weight for 1- and 
2-sided tests.
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Table 4
Cumulative Binomial Probabilities (n = 20)

X p = 0.4 p = 0.6

0 0.00004 0.00000
1 0.00052 0.00000
2 0.00361 0.00001
3 0.01596 0.00005
4 0.05095 0.00032
5 0.12560 0.00161
6 0.25001 0.00647
7 0.41589 0.02103
8 0.59560 0.05653
9 0.75534 0.12752

10 0.87248 0.24466
11 0.94347 0.40440
12 0.97897 0.58411
13 0.99353 0.74999
14 0.99839 0.87440
15 0.99968 0.94905
16 0.99995 0.98404
17 0.99999 0.99639
18 1.0000 0.99948
19 1.0000 0.99996
20 1.0000 1.0000

Table 5
Probability of Rejecting H0 for Various Tests

C P = 0.4 P = 0.6

6 0.87440 0.99839
7 0.74999 0.99353
8 0.58411 0.97897
9 0.40440 0.94347

10 0.24466 0.87248
11 0.12752 0.75534
12 0.05653 0.59560
13 0.02103 0.41589
14 0.00647 0.25001
15 0.00161 0.12560
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Note that because of the discreteness of the binomial distribution, it is not 
always possible to control the type I and II errors at specifi ed levels. In this 
example, it would not be possible to have a type I probability of exactly 5%. 
One could choose a critical value (C) of 12 and get an a of 0.057 (with a cor-
responding power of 0.596 under H1) or choose a C of 13 and get an a of 0.021 
(with a corresponding power of 0.416 under H1). Typically, if one wants to 
control the type I error at a, he takes the critical value corresponding with the 
maximum type I error ≤ a, in this case a critical value of 13. (Of course, the 
power of 0.416 would be unacceptable.)

Example 2

Consider Example 1 above, except the researcher wishes to test the null 
hypothesis that the response rate is 0.4 against the alternative hypothesis that 
the response rate is not 0.4. That is,

H0 : q = 0.4 versus H1 : q ≠ 0.4.

This is a test of a simple hypothesis versus a composite hypothesis. There 
will only be 1 value for the power under H0 (which is a) but multiple 
values under H1. Some researchers are bothered by the simple null hypothesis, 
which is almost surely wrong. The researcher would now need to decide on the 
critical (rejection) region. Suppose he decides to reject H0 if C ≠ 8. Individual 
binomial probabilities are shown in Table 6. The probability of observing 8 
responses when the true response rate is 0.4 is 0.1797. Thus the type I error for 
this test is 1 − 0.1797 = 0.8203, which is unacceptable. Note that the power of 

Table 6
Binomial Probabilities (n = 20)

C p = 0.4 p = 0.6 C p = 0.4 p = 0.6

 0 0.00004 0.00000 11 0.07099 0.15974
 1 0.00049 0.00000 12 0.03550 0.17971
 2 0.00309 0.00000 13 0.01456 0.16588
 3 0.01235 0.00004 14 0.00485 0.12441
 4 0.03499 0.00027 15 0.00129 0.07465
 5 0.07465 0.00129 16 0.00027 0.03499
 6 0.12441 0.00485 17 0.00004 0.01235
 7 0.16588 0.01456 18 0.00000 0.00309
 8 0.17971 0.03550 19 0.00000 0.00049
 9 0.15974 0.07099 20 0.00000 0.00004
10 0.11714 0.11714
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this test for detecting a response rate of 0.6 is 1 − 0.0355 = 0.9645. Clearly the 
researcher would need to select a different critical region. Table 7 lists several 
tests (choices for critical regions) that result in a type I error of 10% or less.

Note that for the binomial distribution, the areas of the lower and upper 
rejection regions are not necessarily equal. For example, from Table 7 the 5% 
2-sided test is seen to have a lower critical value of 3 and an upper critical value 
of 13. This test gives a 2-sided size of 0.037, which is the largest size less than 
or equal to 0.05. The area in the lower critical region under H0 is 0.016 while 
the area in the upper critical region under H0 is 0.021, both less than 0.025 but 
not equal. Some sample size programs require each area to be ≤α/2. The test 
just mentioned satisfi es this criterion. However, what if the size had been 
chosen to be 0.1? Several of the tests shown in Table 7 have a total area in the 
rejection regions between 0.05 and 0.1 under H0. However, none of them satisfy 
the criterion that each area be ≤α/2. So the test for a = 0.1 is the same as the 
test for a = 0.05. Were a chosen to be 0.12, then several tests satisfy the α/2
criterion, and we see that the appropriate test would have a lower critical value 
of 3, an upper critical value of 12, and a power of 0.5956 under the alternative 
hypothesis that the true response rate is 0.6. So the researcher would decide to 
reject H0 if the number of responses is 3 or fewer or 13 or greater. For this test, 
the type I error would be (from Table 5) 0.03699 and the power of the test 
would be 0.4159.

2.3. One-Sided versus Two-Sided Hypothesis Tests

The choice between 1- and 2-sided hypothesis tests has raised considerable 
controversy and debate in the statistical community. Some researchers are 

Table 7
Probability of Rejecting H0 for Various Tests

Reject H0 if C p = 0.4 p = 0.6

≤ or ≥ Lower Upper Total Lower Upper Total

0  12 0.0000 0.0565 0.0566 0.0000 0.5956 0.5956
0  13 0.0000 0.0210 0.0211 0.0000 0.4159 0.4159
1  12 0.0005 0.0565 0.0571 0.0000 0.5956 0.5956
1  13 0.0005 0.0210 0.0216 0.0000 0.4159 0.4159
2  12 0.0036 0.0565 0.0601 0.0000 0.5956 0.5956
2  13 0.0036 0.0210 0.0246 0.0000 0.4159 0.4159
3  12 0.0160 0.0565 0.0725 0.0000 0.5956 0.5956
3  13 0.0160 0.0210 0.0370 0.0000 0.4159 0.4159
4  13 0.0510 0.0210 0.0720 0.0003 0.4159 0.4162
4  14 0.0510 0.0065 0.0574 0.0003 0.2500 0.2503
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suspicious of 1-sided studies, thinking they were used simply to reduce the 
sample size. Fleiss (5), in his book on rates and proportions, when discussing a 
situation in which a 1-sided test might be appropriate (a new treatment vs. the 
standard treatment), states: “If, however, the investigator intends to report the 
results to professional colleagues, he is ethically bound to perform a two-sided 
test. For if the results indicate that the new treatment is actually worse than the 
standard—an inference possible only with a two-tailed test—the investigator is 
obliged to report this as a warning to others who might plan to study the new 
treatment.” If one believes this, then 2-sided tests would be used almost exclu-
sively because it is almost always the objective of investigators to publish their 
results. Peace (6), however, argues that sidedness is an integral part of a hypoth-
esis and 1-sided tests are appropriate if the hypotheses tests are appropriate.

It is important that researchers specify in the study design whether a 1- or 
2-sided test is to be used. (It must be specifi ed, either implicitly or explicitly, 
because the sample size depends on this choice.) One-sided tests should not be 
done at the end of a trial originally designed as 2-sided. Two-sided tests should 
not be done at the end of a trial originally designed as 1-sided, even if “signifi -
cant” results were found in the “wrong” direction. It is this latter possibility 
that leads many investigators to use 2-sided designs exclusively. The power of 
a 1-sided test is always greater than that of a 2-sided test (of the same a) in the 
direction specifi ed by the alternative hypothesis. This is due to the use of z1−a

instead of z1−a/2 in determining the critical regions. Alternatively, as we will see 
below, this means that the same power can be realized with a smaller sample 
size, which with precious subject resources, is an argument for using 1-sided 
designs. Indeed, it is likely that most investigators have a preconceived notion 
about the direction of their results. However, investigators should ask them-
selves how they would report results that are in the opposite direction from that 
predicted (signifi cantly so had a 2-sided test been used). That is, would they be 
reported as signifi cant (P < 0.05) or highly nonsignifi cant (P > 0.975)?

3. Sample Size Determination
An adequate power is realized by choosing an appropriate sample size. How 

to determine the appropriate sample size depends on the question asked, the 
study design, and the test statistic used. We consider in detail the case of testing 
hypotheses about population means.

3.1. Continuous Outcomes: One Group

Although not all continuous variables are normally distributed, the central
limit theorem states that the mean of even nonnormal variables becomes 
approximately normal as the sample size gets large. Although “large” differs 
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depending on the degree of nonnormality, sample sizes greater than 25 to 30 
are usually large enough to ensure that the mean is fairly normally distributed. 
Thus, it is instructive to consider fi rst the sample size formulas for normally 
distributed outcomes because the formulas obtained frequently serve as approx-
imations in asymptotic applications.

We start with the simple case of a single normally distributed mean with 
known variance, even though in reality we will never know the population

variance. Recall that if Xi ∼ N(m, s2) and X X ni
i

n

=
=
∑

1

, the standard deviation

of the sampling distribution of X
–
, which is called the standard error, is given 

by σ n . To see the effect of varying n, consider the example used to intro-
duce the concept of power. When n = 25, we see that the standard error is 
20/5 = 4. If n = 100, the standard error is 20/10 = 2.

The effect of quadrupling the sample size is shown in Figure 7. In the top 
panel, n = 25, and you see that there is a lot of overlap between distributions 
whose means are 8 units apart (120 vs. 128). In the bottom panel, n = 100, and 
the standard error is subsequently smaller so the distributions are tighter and 
now there is not a lot of overlap. The 5% 1-sided critical regions are also 
denoted in the panels. The critical values are 120 1 645 20 25 126 58+ × =. .
and 120 1 645 20 10 123 29+ × =. . , respectively. The area to the right of the 
critical value is 5% under the null hypothesis (mwgt = 120). Under the specifi c 
alternative, mwgt = 128, the power of the test when the sample size is 25 is

1
126 58 128 0

4
1 0 355 0 64−

−⎛
⎝

⎞
⎠ = − − =Φ Φ

. .
( . ) .

when the true mean is 128. That is, the probability is 64% that we would reject 
the null hypothesis in favor of the alternative if the true mean is 128.

In the bottom panel, with a sample size of 100, the power of the test is

1
123 29 128 0

2
1 2 355 0 99−

−⎛
⎝

⎞
⎠ = − − =Φ Φ

. .
( . ) . .

By increasing n from 25 to 100, we have increased the power of the test 
from 0.64 to 0.99 for a fi xed level of a = 0.05.

So what if we wanted the power to be 90% for detecting a mean of 128 (i.e., 
90% chance of rejecting H0 if the true mean is 128)? How do we choose n to 
ensure this power? We see that the power was 64% with n = 25 and the power 
was 99% with n = 100. So we know n will be between these values. We could 
use trial and error, that is, try n = 26 and go through the steps above, then n =
27, and so forth. There is an easier way.
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Fig. 7. Effect of increasing n from 25 (top panel) to 100 (bottom panel) on the sam-
pling distribution of the sample mean and the decrease in the type II error for a fi xed a.
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Note that under the null hypothesis, the critical value (C) is given by 
µ σα0 1+ ×−z n/ . Under the alternative hypothesis, that critical value is given 
by µ σβ1 1− ×−z n/ , where z1−a and z1−b are the 100(1 − a)th and 100(1 − b)th
percentiles of the standard normal distribution function, respectively. Setting 
these two expressions equal to one another, we get:

µ σ µ σα β0 1 1 1+ × = − ×− −z n z s n/ / .

Rearranging, we get

( ) / ( )z z n1 1 1 0− −+ = −α β σ µ µ

( )

( )

z z
n1 1

1 0

− −+
−

=α β σ
µ µ

n
z z

=
+

−
− −( )

( )
.1 1

2 2

1 0
2

α β σ
µ µ

 (1)

For a 2-sided alternative, replace z1−a with z1−a/2. Note that this solution is 
not exact for the 2-sided problem because we are ignoring the area in the lower 
critical region under the alternative hypothesis (which will be negligible in most 
practical applications).

So for our example, had we wanted the power to be 90% at an alterna-
tive of 128 with a 1-sided α = 0.05, our required sample size would be, using 
Equation 1,

n =
+ ×

−
=

( . . )

( )
.

1 645 1 282 20

128 120
53 5

2 2

2
,

which we would round up to 54.
As the reader can see, calculating a sample size is fairly straightforward. The 

hard part is deciding on the appropriate values to include in the formulas. That 
is, what should the type I error be and what difference should be detected with 
what power? Additionally, although we are assuming we know the variance in 
this example, that will never be the case and we will have to come up with a 
reliable estimate.

The sample size formula is sometimes written as

n
z z

=
+− −( )1 1

2

2

α β

∆
,

where ∆ = (m1 − m0)/s. The quantity ∆ = d/s, where d = m1 − m0, is called the 
effect size and is sometimes used in designing a clinical trial. While we do not 
believe this is a good way of designing studies, it is a good way to illustrate 
the effect of a, b, and the difference on the required sample size.
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Table 8 and Table 9 provide the sample sizes required for ∆ ranging from 
0.1 to 1.5 by 0.1. The reader will note the dramatic increase in the required 
sample size as ∆ decreases. Because ∆ is included in the formula as a squared 
term in the denominator, any halving in ∆ results in a quadrupling in the 
required sample size. Consider, for example, ∆ equal to 1, 0.5, and 0.25, with 
a 1-sided a of 0.05 and 1 − b equal to 0.95. The required sample sizes (not 
rounded) would be 10.82, 43.29, and 173.15, respectively. This illustrates the 
importance in choosing d wisely when designing studies.

Example 3

An investigator knows from past experience that patients with syndrome X 
have elevated systolic blood pressure with a mean of 190 mm Hg and a standard 
deviation of 30 mm Hg. The investigator wants to see if a new drug will reduce 
the blood pressure in these patients. He hypothesizes that the blood pressure 
will be less than 190 for patients treated with the new drug. However, because 
it would be an important fi nding to show that the new drug actually increased 
the blood pressure, he decides to do a 2-sided test. He will choose between the 
following null and alternative hypotheses.

H0 : mSBP = 190 versus H1 : mSBP ≠ 190.

Table 8
Sample Sizes Required for a 1-Sided Z-Test as a Function of a, b, and ∆

a = 0.05 a = 0.1 a = 0.2

∆\1 − b 0.80 0.90 0.95 0.80 0.90 0.95 0.80 0.90 0.95

0.1 619 857 1083 451 657 857 284 451 619
0.2 155 215 271 113 165 215  71 113 155
0.3  69  96 121  51  73  96  32  51  69
0.4  39  54  68  29  42  54  18  29  39
0.5  25  35  44  19  27  35  12  19  25
0.6  18  24  31  13  19  24  8  13  18
0.7  13  18  23  10  14  18  6  10  13
0.8  10  14  17  8  11  14  5  8  10
0.9  8  11  14  6  9  11  4  6  8
1.0  7  9  11  5  7  9  3  5  7
1.1  6  8  9  4  6  8  3  4  6
1.2  5  6  8  4  5  6  2  4  5
1.3  4  6  7  3  4  6  2  3  4
1.4  4  5  6  3  4  5  2  3  4
1.5  3  4  5  3  3  4  2  3  3
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Based on his clinical experience, the investigator decides that reducing the 
mean systolic blood pressure by 15 mm Hg would result in a clinically meaning-
ful benefi t for his patients. He designs his study to have 95% power for detect-
ing a change in systolic blood pressure of 15 mm Hg at the 5% 2-sided level of 
signifi cance. He calculates the following sample size:

n =
+ ×

=
( . . )

( )
.

1 96 1 645 30

15
51 98

2 2

2
,

which he would round up to 52 patients.
Thus, the investigator plans to treat the next 52 patients with the new drug, 

after which he will measure their systolic blood pressure, compute a Z statistic, 
and compare it to the critical values of ±1.96.

As mentioned above, we never really know the variance when trying to 
determine a sample size for a mean. Instead we use an estimate of the variance 
obtained from the literature or perhaps from a pilot study, and we typically 
proceed with the sample size calculation as though this were the known true 
value. We then analyze the data using a Student’s t-test with the variance esti-
mated from the sample obtained.

Table 9
Sample Sizes Required for a 2-Sided Z-Test as a Function of a, b, and D

a = 0.05 a = 0.1 a = 0.2

∆\1 − b 0.80 0.90 0.95 0.80 0.90 0.95 0.80 0.90 0.95

0.1 785 1051 1300 619 857 1083 451 657 857
0.2 197 263 325 155 215 271 113 165 215
0.3 88 117 145 69 96 121 51 73 96
0.4 50 66 82 39 54 68 29 42 54
0.5 32 43 52 25 35 44 19 27 35
0.6 22 30 37 18 24 31 13 19 24
0.7 17 22 27 13 18 23 10 14 18
0.8 13 17 21 10 14 17 8 11 14
0.9 10 13 17 8 11 14 6 9 11
1.0 8 11 13 7 9 11 5 7 9
1.1 7 9 11 6 8 9 4 6 8
1.2 6 8 10 5 6 8 4 5 6
1.3 5 7 8 4 6 7 3 4 6
1.4 5 6 7 4 5 6 3 4 5
1.5 4 5 6 3 4 5 3 3 4
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Assuming Xi is normally distributed, the Student’s t-statistic t
X

s n
= −⎛

⎝⎜
⎞
⎠⎟

µ0

is distributed as a central t-distribution with n − 1 degrees of freedom. The

unbiased variance estimator is given by s
X X

n

i
i

n

2

2

1

1
=

−

−
=
∑ ( )

. Then the power of

a 1-sided t-test is given by

 P(m) = 1 − Td,n−1(t1−a,n−1), (2)

where t1−a is the 100(1 − a)th percentile of the central t-distribution with n − 1 
degrees of freedom, and Td,n−1(t1−a,n−1) is the cumulative distribution function for 
a noncentral t-distribution with n − 1 degrees of freedom and noncentrality

parameter δ µ µ
σ

= − 0

n
.  For a 2-sided test, the power function will be

 P(m) = 1 − Td,n−1(t1−a/2,n−1) + Td,n−1(ta/2,n−1). (3)

Note how similar this is to the power function for the normal distribution. 
We just mentioned that s is never actually known, and yet it appears in the 
noncentrality parameter. Again, the usual approach is to replace s by s in the 
noncentrality parameter and proceed as though it were known. Because the 
critical value and the noncentrality parameter are both functions of n, the actual 
sample size can be obtained iteratively. Power for the example used in introduc-
ing power is shown in Table 10 for sample sizes ranging from 52 to 58.

One sees that a sample size of 55 subjects is needed using the t-distribution,
whereas 54 was the estimate based on a normal approximation. Table 10 also 

Table 10
Power for t-Test Using Noncentral t-Distribution and the Normal 
Approximation

n Noncentrality parameter Critical value Power Powera

52 2.88444 1.67528 0.88512 0.89244
53 2.91204 1.67469 0.89046 0.89746
54 2.93939 1.67412 0.89557 0.90226
55 2.96648 1.67356 0.90045 0.90685
56 2.99333 1.67303 0.90513 0.91125
57 3.01993 1.67252 0.90960 0.91545
58 3.04631 1.67203 0.91387 0.91946

aNormal approximation.
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gives the power based on the normal approximation. We see that the normal 
approximation slightly overestimates the power (thus leading to the slightly 
smaller estimate for n).

Table 11 and Table 12 provide the sample sizes required for a 1-sample t-
test for ∆ ranging from 0.1 to 1.5 by 0.1. The reader will note how close these 
sample size estimates are to those provided by the normal approximation in 
Tables 8 and 9. For most practical purposes, the simple formula could be used, 
although modern computers make this unnecessary.

Example 4

Suppose the investigator in Example 3 does not know the variance of sys-
tolic blood pressure in patients with syndrome X. He does a literature review 
and fi nds an article that provides an estimate of 30 mm Hg for the standard 
deviation. As above, the investigator wants to choose between the following 
null and alternative hypotheses:

H0 : mSBP = 190 versus H1 : mSBP ≠ 190.

As above, he designs his study to have 95% power for detecting a change 
in systolic blood pressure of 15 mm Hg at the 5% 2-sided level of signifi cance. 

Table 11
Sample Sizes Required for a 1-Sided t-Test as a Function of a, b, and D

a = 0.05 a = 0.1 a = 0.2

∆\1 − b 0.80 0.90 0.95 0.80 0.90 0.95 0.80 0.90 0.95

0.1 619 857 1083 451 657 857 284 451 619
0.2 155 215  271 113 165 215  71 113 155
0.3  69  96  121  51  73  96  32  51  69
0.4  39  54  68  29  42  54  18  29  39
0.5  25  35  44  19  27  35  12  19  25
0.6  18  24  31  13  19  24  8  13  18
0.7  13  18  23  10  14  18  6  10  13
0.8  10  14  17  8  11  14  5  8  10
0.9  8  11  14  6  9  11  4  6  8
1.0  7  9  11  5  7  9  3  5  7
1.1  6  8   9  4  6  8  3  4  6
1.2  5  6   8  4  5  6  2  4  5
1.3  4  6   7  3  4  6  2  3  4
1.4  4  5   6  3  4  5  2  3  4
1.5  3  4   5  3  3  4  2  3  3
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Now, instead of using a Z statistic to test his hypothesis, he will use a 1-sample 
t-test. Using Equation 3, he iteratively calculates the required sample size to 
be 54, two more than estimated using the normal approximation in Example
3. Thus, the investigator would treat the next 54 patients with the new drug, 
after which he will measure their systolic blood pressure, compute a t-statistic,
and compare it to the critical values of ±2.006.

3.2. Continuous Outcomes: Two Groups

As above, it is instructive to examine the case of normally distributed out-
comes with known variance even though we will never know the variances. 
The formulas derived here will be useful for asymptotic approximations to other 
problems.

The test statistic for testing for a difference in 2 means when the variances 
are known is

Z
X X

n n
=

− − −
+

( ) ( )

/ /
.1 0 1 0

0
2

0 1
2

1

µ µ
σ σ

Note that under the null hypothesis, the critical value (C) is given by

Table 12
Sample Sizes Required for a 2-Sided t-Test as a Function of a, b, and D

a = 0.05 a = 0.1 a = 0.2

∆\1 − b 0.80 0.90 0.95 0.80 0.90 0.95 0.80 0.90 0.95

0.1 785 1051 1300 619 857 1083 451 657 857
0.2 197 263 325 155 215 271 113 165 215
0.3 88 117 145 69 96 121 51 73 96
0.4 50 66 82 39 54 68 29 42 54
0.5 32 43 52 25 35 44 19 27 35
0.6 22 30 37 18 24 31 13 19 24
0.7 17 22 27 13 18 23 10 14 18
0.8 13 17 21 10 14 17 8 11 14
0.9 10 13 17 8 11 14 6 9 11
1.0 8 11 13 7 9 11 5 7 9
1.1 7 9 11 6 8 9 4 6 8
1.2 6 8 10 5 6 8 4 5 6
1.3 5 7 8 4 6 7 3 4 6
1.4 5 6 7 4 5 6 3 4 5
1.5 4 5 6 3 4 5 3 3 4
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µ σ σα0 1 0
2

0 1
2

1+ +−z n n/ / .

Under the alternative hypothesis, that critical value is given by

µ σ σβ1 1 0
2

0 1
2

1− +−z n n/ / .

Setting these two expressions equal to one another, we get:

µ σ σ µ σ σα β0 1 0
2

0 1
2

1 1 1 0
2

0 1
2

1+ + = − +− −z n n z n n/ / / / .

Rearranging and letting n1 = knn0 and s 2
1 = kvs 2

0, we get

( ) / /z z n k k nv n1 1 0
2

0 0
2

0 1 0− −+ + = −α β σ σ µ µ

( )

( )

z z k n

k k
n

n v

1 1

1 0

0

0
2

0
2

− −+
−

=
+

α β

µ µ σ σ

n
k k z z

k
n v

n
0

1 1
2

0
2

1 0
2

=
+ +

−
− −( )( )

( )
.α β σ

µ µ
 (4)

Unequal sample sizes and unequal variances both have an impact on required 
sample size. The total sample size required with unequal allocation and unequal 
variances relative to the total sample size required when the sample sizes and

variances are equal in the two groups is given by 
( )( )k k k

k
n v n

n

+ +1

4
, and this is

shown in Table 13 for a variety of kn and kv. In general, equal allocation is 
nearly optimal. Some effi ciency is gained by allocating more subjects to the 
treatment with the largest variance.

Table 13
Total Required Sample Size for Various Ratios of 
Variances and Sample Sizes in the 2 Groups 
Relative to the Total Required Sample Size 
Assuming Equal Sample Sizes and Variances

kv

kn 1.0 1.3333 2 4

0.25 1.5625 1.9792 2.8125 5.3125
0.5 1.1250 1.3750 1.8750 3.3750
0.75 1.0208 1.2153 1.6042 2.7708
1 1.0000 1.1666 1.5000 2.5000
1.3333 1.0208 1.1666 1.4583 2.3333
2 1.1250 1.2500 1.5000 2.2500
4 1.5625 1.6666 1.8750 2.5000
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Assuming equal variances and equal allocation to each treatment arm, the 
sample size needed in each arm is given by

n
z z

=
+
−

− −2 1 1
2 2

1 0
2

( )

( )
.α β σ

µ µ
 (5)

As mentioned above, s2 will never be known, and we use an estimate in its 
place and proceed with the sample size calculation as though this were the 
known true value. We then analyze the data using a Student’s t-test with the 
variance estimated from the sample obtained.

Then the power of the test is given by

 Power = 1 − Td,N−2(t1−a/2,N−2) + Td,N−2(−t1−a/2,N−2), (6)

for a 2-sided alternative, where N is the total sample size, t1−a,N−2 is the 100(1−
a)th percentile of the central t-distribution with N − 2 degrees of freedom, and 
Td,N−2(t1−a,N−2) is the cumulative distribution function for a noncentral t-distribu-

tion with N − 2 degrees of freedom and noncentrality parameter δ
σ

= N
∆

2
.

The standard method for determining the sample size for the proposed study is 
to iteratively solve Equation 6 with s 2 replaced by s2 such that the power 
provided equals the desired power. The sample size formula given by Equation
5 with s 2 replaced by s2 provides a reasonable estimate.

Example 5

Suppose an investigator wants to compare a new treatment to a standard 
treatment for lowering systolic blood pressure (SBP). A previous study provides 
an estimate of 30 mm Hg for the standard deviation. The investigator wants to 
choose between the following null and alternative hypotheses.

H0 : m1 − m2 = 0 versus H1 : m1 − m2 ≠ 0,

where m1 and m2 are the mean SBP in the 2 groups. He designs his study to 
have 90% power for detecting a difference in mean systolic blood pressure of 
20 mm Hg at the 5% 2-sided level of signifi cance. Using Equation 5 above, the 
investigator calculates an n of 47.3, which he would raise to 48 per group. Using 
Equation 6, he iteratively calculates the required sample size to be 49. Thus, 
the investigator would randomize 98 patients, half to receive the standard treat-
ment and half to receive the new therapy.

3.3. Dichotomous Outcomes

In many cases, investigators are interested in questions regarding propor-
tions. For example, is the toxicity experienced by patients undergoing a new 
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experimental therapy greater than that observed historically using standard 
therapies or is the response rate to treatment A different from the response rate 
to treatment B? For single groups, the sample size formula used in testing the 
null hypothesis,

H0 : P ≤ p0 versus H1 : P > p0,

is given by

n
z z

=
−( ) + −( )( )

−( )
− −1 0 0 1 1 1

2

1 0
2

1 1α βπ π π π

π π
,  (7)

where p1 is a clinically meaningful alternative.
For comparing proportions in 2 groups, we are interested in testing the null 

hypothesis,

H0 : pB − pA = 0 versus H1 : pB − pA ≠ 0,

and the sample size required in each group, assuming equal sample sizes in the 
2 groups, is given by

n
z z

=
−( ) + −( ) + −( )( )

−( )
− −1 1 2 2 1 1

2

2 1
2

2 1 1 1α βπ π π π π π

π π
,  (8)

where p̄ = (p1 + p2)/2.

Example 6

Suppose an investigator wishes to compare the response rate to a new treat-
ment for small cell lung cancer relative to that of the standard treatment. The 
standard treatment results in response in approximately 50% of patients. The 
investigator would consider the new treatment successful if it increased 
the response rate to 65%. She wants to have 90% power for detecting this 
response rate at the 5% 1-sided level of signifi cance. The sample size needed 
in each group for this study would be

n =
× × + × + ×

−
=

( . . . . . . . . )

( . . )
.

1 645 2 0 55 0 45 1 282 0 6 0 4 0 5 0 5

0 6 0 5
422 2

2

2
,,

which she would round up to 423 per group.

3.4. Calculation of Power or Sample Size

There are many software packages devoted to the calculation of power or 
sample size. All require the specifi cation of the statistical test, whether the test 
will be 1- or 2-sided, the signifi cance level (a), the study design, the clinical 
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effect of interest, and either the desired power or sample size. Power packages 
include nQuery Advisor (http://www.statsol.ie/), Power Analysis and Sample 
Size (http://www.ncss.com/), and Power and Precision (http://www.power-
analysis.com/). In addition, many statistical packages have the ability to calcu-
late power for simple designs. These include SAS (http://www.sas.com/) and 
S-Plus (http://www.insightful.com). Finally, there are many excellent, free 
online tools for the calculation of power. You can fi nd several by doing an 
Internet search for “statistical power.” Three good examples of Web sites offer-
ing power and sample size tools are those developed by the UCLA Department 
of Statistics (http://calculators.stat.ucla.edu/), Russell Lenth (http://www.math.
uiowa.edu/~rlenth/Power/), and John Pezzullo (http://statpages.org/). As an 
example, suppose we are designing a randomized study comparing mean weight 
loss for 2 different regimens, one diet only and one diet and exercise. We 
anticipate a mean weight loss of 5 lb for the diet-only participants, and we 
would like to be able to detect an additional 5-lb weight loss (10-lb total) for 
those participants receiving the diet and exercise program with 90% power at 
the 5% 2-sided level of signifi cance. Using nQuery Advisor, one specifi es that 
means are being compared between 2 groups using a Student’s t-test with equal 
variances, a (0.05, 2-sided), the difference of interest (5 lb), the standard devia-
tion (5 lb), and the power (90%). nQuery Advisor returns a sample size of 23 
per group.

Another method for power calculation is to use simulation. This approach 
can be used for simple power calculations such as the one just described and 
for much more complicated methods. In fact, many statistical methods do not 
have formulae for the calculation of power and power must be estimated using 
simulation. This approach requires that a method exist to generate data under 
the assumed distributions and a way to perform the statistical test. There are 
three main steps: (1) generate data under the specifi ed design and alternative 
hypothesis, (2) perform the statistical test and determine whether it is signifi cant 
at the a level of signifi cance, and (3) repeat many times keeping track of the 
proportion of times that the result is signifi cant. Recall the binomial distribution 
discussed in Chapter 3. We estimated the true proportion as the proportion in 
a sample. We are doing the same thing here. We do not know the true power 
(probability of rejecting the null hypothesis given the alternative), but we can 
use the proportion of times we reject the null hypothesis as an estimate of the 
true power. To illustrate this method, we use the same scenario described above 
(2-sample t-test, group means of 5 and 10, within-group standard deviation of 
5, and a 2-sided test at the 5% level). The true power with a sample size of 23 
per group is 91.250%, which is represented by the horizontal line in Figure 8.
The jagged line is the proportion of time the null hypothesis is rejected through 
that simulation. Notice that there is a fair amount of variability early on but 
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that the sample proportion stabilizes at the true power as the number of simula-
tions grows. The use of simulation is more diffi cult than using a formula 
because it takes longer to run simulations and does not allow direct estimation 
of sample size (you would have to fi x the sample size and then estimate power 
and then try another sample size until you got the power you desired). On the 
other hand, simulation can always be used and works in many cases where 
formulae are unavailable.

4. Other Considerations
Typically, in calculating a sample size, the investigator must specify the 

variance (s2) of the outcome measure and a difference (d) that is important to 
detect with a specifi ed power (1 − b) and level of signifi cance (a). Specifi cation 
of the clinically meaningful difference can be diffi cult. What is a meaningful 
effect (i.e., difference in response between 2 treatments) probably differs for 
each investigator, and some investigators may think that any effect is meaning-
ful. Because the difference enters the sample size formula as a squared term, 
halving the difference quadruples the sample size. For example, a study designed 
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Fig. 8. The cumulative proportion of signifi cant simulations plotted against the 
number of simulations. The resulting proportion estimates power. As the number of 
simulations increases, the estimate stabilizes at the truth of 91.25%.
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to detect a difference of 5 lb between 2 weight-loss regimens takes 4 times as 
many subjects as one designed to detect a 10-lb difference. However, one 
should resist the temptation to choose the meaningful difference as that differ-
ence which results in a feasible sample size.

Still more diffi cult in many cases is specifi cation of the variance. Most 
sample size formulae assume that the variance is a known fi xed value. Instead, 
estimates of the variance obtained from published studies or pilot studies per-
formed by the investigator. Published studies rarely use exactly the same mea-
surement assessed exactly the same way using the same patient population as 
the new study, so it is never clear how close the variance estimate is to the true 
parameter. It is just an estimate. Dudewicz (7) showed that using an estimated 
variance in traditional sample size calculations results in power estimates 
that can be “misleadingly large.” Shiffl er and Adams (8) and Browne (9) pro-
posed infl ating the traditional sample size estimates to ensure a desired power 
with a specifi ed level of confi dence. For example, if an investigator wants to 
be 90% confi dent that the sample size is large enough to provide 95% power, 
he would need to infl ate the calculated sample size by d.f./c−1(1 − g, d.f.), where 
d.f. is the degrees of freedom of the variance estimate, g is the desired confi -
dence, and c−1(1 − g, d.f.) is the 100(1 − g)th percentile of the chi-square dis-
tribution with d.f. degrees of freedom. So if the degrees of freedom of the 
variance estimate was 20, the required sample size would need to be infl ated 
by 1.61.

The type I and II errors are the easiest parameters to specify, but there is not 
universal agreement on what these values should be. Although it is clear that 
the type I and II errors should be small, there is no clear defi nition of what 
constitutes “small” for a particular study. This is not a trivial consideration 
because the sample size required approximately doubles in going from a design 
with 80% power at the 5% 1-sided level of signifi cance to one with 95% power 
at the 5% 2-sided level of signifi cance. We usually specify the type I (a) and 
type II errors (b) a priori. These are often fi xed at 0.01 ≤ a ≤ 0.05 and 0.05 ≤
b ≤ 0.2 regardless of the type of study. Lee and Zelen (10) believe that the 
selection of a and b should be based on the costs of making different types of 
wrong decisions. For example, in the early course of a line of research, an 
incorrect signifi cant result (meaning the null hypothesis is really true) would 
lead to further investigation. Although this might be a waste of time, it is likely 
preferable than prematurely stopping a line of research. Lee and Zelen demon-
strate using data from the Eastern Cooperative Oncology Group (ECOG) that 
in a series of clinical trials, the probability of the null hypothesis being false is 
about 30%. Although we all would prefer to believe that our intervention will 
defi nitely have the desired effect, we would all do well to remember that they 
rarely do.
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O’Brien and Castelloe (11) elaborate on the ideas of Lee and Zelen in a more 
accessible presentation. They defi ne g as the probability that the null hypothesis 
is false. With the addition of this one parameter, the hypothesis testing frame-
work can be recast as a diagnostic test as was described in Chapter 6. Two 
important questions are not addressed by the usual type I and type II errors: If 
the trial achieves statistical signifi cance, what is the chance this will be an 
incorrect inference? If the trial does not achieve statistical signifi cance, what is 
the chance this will be an incorrect inference? These quantities are defi ned by 
O’Brien and Castelloe as the crucial type I and type II errors. Specifi cally,

α α α γ
α γ β γ

* true= ≤[ ] =
−( )

−( ) + −( )
P H P0

1

1 1
|

and

β α βγ
βγ α γ

* false= >[ ] =
+ −( ) −( )

P H P0
1 1

| .

If, for example, we believe that g = 0.3 and we design a study with 90% 
power and testing at the 5% level, our crucial type I error (a*) = 0.1148 and 
our crucial type II error (b*) = 0.0432. That is, if we reject the null hypothesis, 
the chance is 11.5% that the null hypothesis is true. If we accept the null 
hypothesis, the chance is 4.3% that the null hypothesis is false.

O’Brien and Castelloe describe the usual course of scientifi c enquiry (denoted 
as the “March of Science”) where investigation may begin with small pilot 
studies, proceed to larger scale studies, and have these studies confi rmed. Once 
an idea passes each stage of investigation, the belief in the idea grows. At the 
design of the fi rst stage, we may be skeptical and believe that g = 0.25. If a 
pilot study is positive, we may then believe that g = 0.5. If many studies confi rm 
the idea, we may ultimately believe that g is close to 1. Incorporating g can 
have an impact on the sample size chosen and should be considered as it is not 
diffi cult and is instructive.

5. Conclusion
Numerous other factors can impact power and should also be considered 

when determining the appropriate sample size. These include retention, non-
compliance (dropouts and drop-ins), missing data, interim analyses, multiple 
end points, multiple arms, and nonindependence. Wittes (12) provides a very 
nice discussion of these and other problems that can occur and what can be 
done about them. In addition, Lenth (13) provides some excellent practi-
cal advice in determining appropriate sample sizes. In conclusion, sample 
size determination is a challenging but necessary and rewarding exercise. 
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Appropriate and early consideration of all the issues that can affect the power 
helps ensure a rigorous and well-designed study.
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